Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride.

Identifieur interne : 001F68 ( PubMed/Corpus ); précédent : 001F67; suivant : 001F69

Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride.

Auteurs : Hui-Ping Chang ; Chi-Yuan Chou ; Gu-Gang Chang

Source :

RBID : pubmed:17142288

English descriptors

Abstract

Chemical denaturant sensitivity of the dimeric main protease from severe acute respiratory syndrome (SARS) coronavirus to guanidinium chloride was examined in terms of fluorescence spectroscopy, circular dichroism, analytical ultracentrifuge, and enzyme activity change. The dimeric enzyme dissociated at guanidinium chloride concentration of <0.4 M, at which the enzymatic activity loss showed close correlation with the subunit dissociation. Further increase in guanidinium chloride induced a reversible biphasic unfolding of the enzyme. The unfolding of the C-terminal domain-truncated enzyme, on the other hand, followed a monophasic unfolding curve. Different mutants of the full-length protease (W31 and W207/W218), with tryptophanyl residue(s) mutated to phenylalanine at the C-terminal or N-terminal domain, respectively, were constructed. Unfolding curves of these mutants were monophasic but corresponded to the first and second phases of the protease, respectively. The unfolding intermediate of the protease thus represented a folded C-terminal domain but an unfolded N-terminal domain, which is enzymatically inactive due to loss of regulatory properties. The various enzyme forms were characterized in terms of hydrophobicity and size-and-shape distributions. We provide direct evidence for the functional role of C-terminal domain in stabilization of the catalytic N-terminal domain of SARS coronavirus main protease.

DOI: 10.1529/biophysj.106.091736
PubMed: 17142288

Links to Exploration step

pubmed:17142288

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride.</title>
<author>
<name sortKey="Chang, Hui Ping" sort="Chang, Hui Ping" uniqKey="Chang H" first="Hui-Ping" last="Chang">Hui-Ping Chang</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan. huiping_chp@hotmail.com</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chou, Chi Yuan" sort="Chou, Chi Yuan" uniqKey="Chou C" first="Chi-Yuan" last="Chou">Chi-Yuan Chou</name>
</author>
<author>
<name sortKey="Chang, Gu Gang" sort="Chang, Gu Gang" uniqKey="Chang G" first="Gu-Gang" last="Chang">Gu-Gang Chang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17142288</idno>
<idno type="pmid">17142288</idno>
<idno type="doi">10.1529/biophysj.106.091736</idno>
<idno type="wicri:Area/PubMed/Corpus">001F68</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride.</title>
<author>
<name sortKey="Chang, Hui Ping" sort="Chang, Hui Ping" uniqKey="Chang H" first="Hui-Ping" last="Chang">Hui-Ping Chang</name>
<affiliation>
<nlm:affiliation>Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan. huiping_chp@hotmail.com</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chou, Chi Yuan" sort="Chou, Chi Yuan" uniqKey="Chou C" first="Chi-Yuan" last="Chou">Chi-Yuan Chou</name>
</author>
<author>
<name sortKey="Chang, Gu Gang" sort="Chang, Gu Gang" uniqKey="Chang G" first="Gu-Gang" last="Chang">Gu-Gang Chang</name>
</author>
</analytic>
<series>
<title level="j">Biophysical journal</title>
<idno type="ISSN">0006-3495</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Catalytic Domain</term>
<term>Circular Dichroism</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Guanidine (chemistry)</term>
<term>Indicators and Reagents</term>
<term>Models, Molecular</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
<term>Protein Structure, Quaternary</term>
<term>Protein Structure, Tertiary</term>
<term>SARS Virus (enzymology)</term>
<term>Viral Proteins (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Guanidine</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Catalytic Domain</term>
<term>Circular Dichroism</term>
<term>Indicators and Reagents</term>
<term>Models, Molecular</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
<term>Protein Structure, Quaternary</term>
<term>Protein Structure, Tertiary</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chemical denaturant sensitivity of the dimeric main protease from severe acute respiratory syndrome (SARS) coronavirus to guanidinium chloride was examined in terms of fluorescence spectroscopy, circular dichroism, analytical ultracentrifuge, and enzyme activity change. The dimeric enzyme dissociated at guanidinium chloride concentration of <0.4 M, at which the enzymatic activity loss showed close correlation with the subunit dissociation. Further increase in guanidinium chloride induced a reversible biphasic unfolding of the enzyme. The unfolding of the C-terminal domain-truncated enzyme, on the other hand, followed a monophasic unfolding curve. Different mutants of the full-length protease (W31 and W207/W218), with tryptophanyl residue(s) mutated to phenylalanine at the C-terminal or N-terminal domain, respectively, were constructed. Unfolding curves of these mutants were monophasic but corresponded to the first and second phases of the protease, respectively. The unfolding intermediate of the protease thus represented a folded C-terminal domain but an unfolded N-terminal domain, which is enzymatically inactive due to loss of regulatory properties. The various enzyme forms were characterized in terms of hydrophobicity and size-and-shape distributions. We provide direct evidence for the functional role of C-terminal domain in stabilization of the catalytic N-terminal domain of SARS coronavirus main protease.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17142288</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>05</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-3495</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>92</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2007</Year>
<Month>Feb</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Biophysical journal</Title>
<ISOAbbreviation>Biophys. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride.</ArticleTitle>
<Pagination>
<MedlinePgn>1374-83</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Chemical denaturant sensitivity of the dimeric main protease from severe acute respiratory syndrome (SARS) coronavirus to guanidinium chloride was examined in terms of fluorescence spectroscopy, circular dichroism, analytical ultracentrifuge, and enzyme activity change. The dimeric enzyme dissociated at guanidinium chloride concentration of <0.4 M, at which the enzymatic activity loss showed close correlation with the subunit dissociation. Further increase in guanidinium chloride induced a reversible biphasic unfolding of the enzyme. The unfolding of the C-terminal domain-truncated enzyme, on the other hand, followed a monophasic unfolding curve. Different mutants of the full-length protease (W31 and W207/W218), with tryptophanyl residue(s) mutated to phenylalanine at the C-terminal or N-terminal domain, respectively, were constructed. Unfolding curves of these mutants were monophasic but corresponded to the first and second phases of the protease, respectively. The unfolding intermediate of the protease thus represented a folded C-terminal domain but an unfolded N-terminal domain, which is enzymatically inactive due to loss of regulatory properties. The various enzyme forms were characterized in terms of hydrophobicity and size-and-shape distributions. We provide direct evidence for the functional role of C-terminal domain in stabilization of the catalytic N-terminal domain of SARS coronavirus main protease.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Hui-Ping</ForeName>
<Initials>HP</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan. huiping_chp@hotmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chou</LastName>
<ForeName>Chi-Yuan</ForeName>
<Initials>CY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Gu-Gang</ForeName>
<Initials>GG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>12</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biophys J</MedlineTA>
<NlmUniqueID>0370626</NlmUniqueID>
<ISSNLinking>0006-3495</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007202">Indicators and Reagents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>JU58VJ6Y3B</RegistryNumber>
<NameOfSubstance UI="D019791">Guanidine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Biophys J. 2007 Jul 15;93(2):704</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019791" MajorTopicYN="N">Guanidine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007202" MajorTopicYN="N">Indicators and Reagents</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="Y">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011489" MajorTopicYN="N">Protein Denaturation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="Y">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17142288</ArticleId>
<ArticleId IdType="pii">S0006-3495(07)70948-7</ArticleId>
<ArticleId IdType="doi">10.1529/biophysj.106.091736</ArticleId>
<ArticleId IdType="pmc">PMC1783898</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 Apr 20;43(15):4568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Biol. 1997 Jan;4(1):10-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8989315</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2005 Dec;272(23):5962-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16302961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jun 4;279(23):24765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 May 4;43(17):4906-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109248</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2002 Jul 1;21(13):3213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Jun 17;280(24):22741-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2005 Nov 18;354(1):25-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242152</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2005 Oct;3(10):e324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16128623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):31257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788388</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Dec;15(6):664-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Jan 20;339(3):865-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16329994</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2000 Mar;78(3):1606-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692345</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Top Med Chem. 2006;6(4):361-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16611148</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>C R Biol. 2005 Aug;328(8):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16125648</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2107-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8460117</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Mol Med. 2003 Aug;9(8):323-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2006 Jun 15;90(12):4651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565040</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS J. 2006 Mar;273(5):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478476</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 Nov 30;43(47):14958-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15554703</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 1996;57:31-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8849992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 May 19;281(20):13894-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565086</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Mol Biol. 1995;40:343-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7633529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Struct Biol. 2006 Feb;16(1):68-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16443362</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 1993 Nov;2(11):1844-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8268795</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2002 Mar;83(Pt 3):581-593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842253</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2002 Dec;102(12):4609-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12475203</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biotechnol. 1990 Apr;8(4):93-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1367432</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Biochem Sci. 2005 Jan;30(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653321</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Protein Chem. 1995;46:217-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7771319</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2005 Nov 11;353(5):1137-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16219322</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001F68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17142288
   |texte=   Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:17142288" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021