Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein.

Identifieur interne : 001D13 ( PubMed/Corpus ); précédent : 001D12; suivant : 001D14

Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein.

Auteurs : Anastasia N. Vlasova ; Xinsheng Zhang ; Mustafa Hasoksuz ; Hadya S. Nagesha ; Lia M. Haynes ; Ying Fang ; Shan Lu ; Linda J. Saif

Source :

RBID : pubmed:17913799

English descriptors

Abstract

In 2002, severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged in humans, causing a global epidemic. By phylogenetic analysis, SARS-CoV is distinct from known CoVs and most closely related to group 2 CoVs. However, no antigenic cross-reactivity between SARS-CoV and known CoVs was conclusively and consistently demonstrated except for group 1 animal CoVs. We analyzed this cross-reactivity by an enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using specific antisera to animal CoVs and SARS-CoV and SARS patient convalescent-phase or negative sera. Moderate two-way cross-reactivity between SARS-CoV and porcine CoVs (transmissible gastroenteritis CoV [TGEV] and porcine respiratory CoV [PRCV]) was mediated through the N but not the spike protein, whereas weaker cross-reactivity occurred with feline (feline infectious peritonitis virus) and canine CoVs. Using Escherichia coli-expressed recombinant SARS-CoV N protein and fragments, the cross-reactive region was localized between amino acids (aa) 120 to 208. The N-protein fragments comprising aa 360 to 412 and aa 1 to 213 reacted specifically with SARS convalescent-phase sera but not with negative human sera in ELISA; the fragment comprising aa 1 to 213 cross-reacted with antisera to animal CoVs, whereas the fragment comprising aa 360 to 412 did not cross-react and could be a potential candidate for SARS diagnosis. Particularly noteworthy, a single substitution at aa 120 of PRCV N protein diminished the cross-reactivity. We also demonstrated that the cross-reactivity is not universal for all group 1 CoVs, because HCoV-NL63 did not cross-react with SARS-CoV. One-way cross-reactivity of HCoV-NL63 with group 1 CoVs was localized to aa 1 to 39 and at least one other antigenic site in the N-protein C terminus, differing from the cross-reactive region identified in SARS-CoV N protein. The observed cross-reactivity is not a consequence of a higher level of amino acid identity between SARS-CoV and porcine CoV nucleoproteins, because sequence comparisons indicated that SARS-CoV N protein has amino acid identity similar to that of infectious bronchitis virus N protein and shares a higher level of identity with bovine CoV N protein within the cross-reactive region. The TGEV and SARS-CoV N proteins are RNA chaperons with long disordered regions. We speculate that during natural infection, antibodies target similar short antigenic sites within the N proteins of SARS-CoV and porcine group 1 CoVs that are exposed to an immune response. Identification of the cross-reactive and non-cross-reactive N-protein regions allows development of SARS-CoV-specific antibody assays for screening animal and human sera.

DOI: 10.1128/JVI.01169-07
PubMed: 17913799

Links to Exploration step

pubmed:17913799

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein.</title>
<author>
<name sortKey="Vlasova, Anastasia N" sort="Vlasova, Anastasia N" uniqKey="Vlasova A" first="Anastasia N" last="Vlasova">Anastasia N. Vlasova</name>
<affiliation>
<nlm:affiliation>Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xinsheng" sort="Zhang, Xinsheng" uniqKey="Zhang X" first="Xinsheng" last="Zhang">Xinsheng Zhang</name>
</author>
<author>
<name sortKey="Hasoksuz, Mustafa" sort="Hasoksuz, Mustafa" uniqKey="Hasoksuz M" first="Mustafa" last="Hasoksuz">Mustafa Hasoksuz</name>
</author>
<author>
<name sortKey="Nagesha, Hadya S" sort="Nagesha, Hadya S" uniqKey="Nagesha H" first="Hadya S" last="Nagesha">Hadya S. Nagesha</name>
</author>
<author>
<name sortKey="Haynes, Lia M" sort="Haynes, Lia M" uniqKey="Haynes L" first="Lia M" last="Haynes">Lia M. Haynes</name>
</author>
<author>
<name sortKey="Fang, Ying" sort="Fang, Ying" uniqKey="Fang Y" first="Ying" last="Fang">Ying Fang</name>
</author>
<author>
<name sortKey="Lu, Shan" sort="Lu, Shan" uniqKey="Lu S" first="Shan" last="Lu">Shan Lu</name>
</author>
<author>
<name sortKey="Saif, Linda J" sort="Saif, Linda J" uniqKey="Saif L" first="Linda J" last="Saif">Linda J. Saif</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17913799</idno>
<idno type="pmid">17913799</idno>
<idno type="doi">10.1128/JVI.01169-07</idno>
<idno type="wicri:Area/PubMed/Corpus">001D13</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein.</title>
<author>
<name sortKey="Vlasova, Anastasia N" sort="Vlasova, Anastasia N" uniqKey="Vlasova A" first="Anastasia N" last="Vlasova">Anastasia N. Vlasova</name>
<affiliation>
<nlm:affiliation>Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xinsheng" sort="Zhang, Xinsheng" uniqKey="Zhang X" first="Xinsheng" last="Zhang">Xinsheng Zhang</name>
</author>
<author>
<name sortKey="Hasoksuz, Mustafa" sort="Hasoksuz, Mustafa" uniqKey="Hasoksuz M" first="Mustafa" last="Hasoksuz">Mustafa Hasoksuz</name>
</author>
<author>
<name sortKey="Nagesha, Hadya S" sort="Nagesha, Hadya S" uniqKey="Nagesha H" first="Hadya S" last="Nagesha">Hadya S. Nagesha</name>
</author>
<author>
<name sortKey="Haynes, Lia M" sort="Haynes, Lia M" uniqKey="Haynes L" first="Lia M" last="Haynes">Lia M. Haynes</name>
</author>
<author>
<name sortKey="Fang, Ying" sort="Fang, Ying" uniqKey="Fang Y" first="Ying" last="Fang">Ying Fang</name>
</author>
<author>
<name sortKey="Lu, Shan" sort="Lu, Shan" uniqKey="Lu S" first="Shan" last="Lu">Shan Lu</name>
</author>
<author>
<name sortKey="Saif, Linda J" sort="Saif, Linda J" uniqKey="Saif L" first="Linda J" last="Saif">Linda J. Saif</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antibodies, Viral (blood)</term>
<term>Antibodies, Viral (immunology)</term>
<term>Antigens, Viral (blood)</term>
<term>Antigens, Viral (immunology)</term>
<term>Cats</term>
<term>Cattle</term>
<term>Cell Line</term>
<term>Coronavirus (classification)</term>
<term>Coronavirus (immunology)</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Coronavirus Infections (virology)</term>
<term>Cross Reactions</term>
<term>Dogs</term>
<term>Guinea Pigs</term>
<term>Humans</term>
<term>Immune Sera (immunology)</term>
<term>Nucleocapsid Proteins (chemistry)</term>
<term>Nucleocapsid Proteins (genetics)</term>
<term>Nucleocapsid Proteins (immunology)</term>
<term>SARS Virus (immunology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Antibodies, Viral</term>
<term>Antigens, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Nucleocapsid Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Nucleocapsid Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies, Viral</term>
<term>Antigens, Viral</term>
<term>Immune Sera</term>
<term>Nucleocapsid Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Coronavirus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cats</term>
<term>Cattle</term>
<term>Cell Line</term>
<term>Cross Reactions</term>
<term>Dogs</term>
<term>Guinea Pigs</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In 2002, severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged in humans, causing a global epidemic. By phylogenetic analysis, SARS-CoV is distinct from known CoVs and most closely related to group 2 CoVs. However, no antigenic cross-reactivity between SARS-CoV and known CoVs was conclusively and consistently demonstrated except for group 1 animal CoVs. We analyzed this cross-reactivity by an enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using specific antisera to animal CoVs and SARS-CoV and SARS patient convalescent-phase or negative sera. Moderate two-way cross-reactivity between SARS-CoV and porcine CoVs (transmissible gastroenteritis CoV [TGEV] and porcine respiratory CoV [PRCV]) was mediated through the N but not the spike protein, whereas weaker cross-reactivity occurred with feline (feline infectious peritonitis virus) and canine CoVs. Using Escherichia coli-expressed recombinant SARS-CoV N protein and fragments, the cross-reactive region was localized between amino acids (aa) 120 to 208. The N-protein fragments comprising aa 360 to 412 and aa 1 to 213 reacted specifically with SARS convalescent-phase sera but not with negative human sera in ELISA; the fragment comprising aa 1 to 213 cross-reacted with antisera to animal CoVs, whereas the fragment comprising aa 360 to 412 did not cross-react and could be a potential candidate for SARS diagnosis. Particularly noteworthy, a single substitution at aa 120 of PRCV N protein diminished the cross-reactivity. We also demonstrated that the cross-reactivity is not universal for all group 1 CoVs, because HCoV-NL63 did not cross-react with SARS-CoV. One-way cross-reactivity of HCoV-NL63 with group 1 CoVs was localized to aa 1 to 39 and at least one other antigenic site in the N-protein C terminus, differing from the cross-reactive region identified in SARS-CoV N protein. The observed cross-reactivity is not a consequence of a higher level of amino acid identity between SARS-CoV and porcine CoV nucleoproteins, because sequence comparisons indicated that SARS-CoV N protein has amino acid identity similar to that of infectious bronchitis virus N protein and shares a higher level of identity with bovine CoV N protein within the cross-reactive region. The TGEV and SARS-CoV N proteins are RNA chaperons with long disordered regions. We speculate that during natural infection, antibodies target similar short antigenic sites within the N proteins of SARS-CoV and porcine group 1 CoVs that are exposed to an immune response. Identification of the cross-reactive and non-cross-reactive N-protein regions allows development of SARS-CoV-specific antibody assays for screening animal and human sera.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17913799</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>12</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>81</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2007</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein.</ArticleTitle>
<Pagination>
<MedlinePgn>13365-77</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>In 2002, severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged in humans, causing a global epidemic. By phylogenetic analysis, SARS-CoV is distinct from known CoVs and most closely related to group 2 CoVs. However, no antigenic cross-reactivity between SARS-CoV and known CoVs was conclusively and consistently demonstrated except for group 1 animal CoVs. We analyzed this cross-reactivity by an enzyme-linked immunosorbent assay (ELISA) and Western blot analysis using specific antisera to animal CoVs and SARS-CoV and SARS patient convalescent-phase or negative sera. Moderate two-way cross-reactivity between SARS-CoV and porcine CoVs (transmissible gastroenteritis CoV [TGEV] and porcine respiratory CoV [PRCV]) was mediated through the N but not the spike protein, whereas weaker cross-reactivity occurred with feline (feline infectious peritonitis virus) and canine CoVs. Using Escherichia coli-expressed recombinant SARS-CoV N protein and fragments, the cross-reactive region was localized between amino acids (aa) 120 to 208. The N-protein fragments comprising aa 360 to 412 and aa 1 to 213 reacted specifically with SARS convalescent-phase sera but not with negative human sera in ELISA; the fragment comprising aa 1 to 213 cross-reacted with antisera to animal CoVs, whereas the fragment comprising aa 360 to 412 did not cross-react and could be a potential candidate for SARS diagnosis. Particularly noteworthy, a single substitution at aa 120 of PRCV N protein diminished the cross-reactivity. We also demonstrated that the cross-reactivity is not universal for all group 1 CoVs, because HCoV-NL63 did not cross-react with SARS-CoV. One-way cross-reactivity of HCoV-NL63 with group 1 CoVs was localized to aa 1 to 39 and at least one other antigenic site in the N-protein C terminus, differing from the cross-reactive region identified in SARS-CoV N protein. The observed cross-reactivity is not a consequence of a higher level of amino acid identity between SARS-CoV and porcine CoV nucleoproteins, because sequence comparisons indicated that SARS-CoV N protein has amino acid identity similar to that of infectious bronchitis virus N protein and shares a higher level of identity with bovine CoV N protein within the cross-reactive region. The TGEV and SARS-CoV N proteins are RNA chaperons with long disordered regions. We speculate that during natural infection, antibodies target similar short antigenic sites within the N proteins of SARS-CoV and porcine group 1 CoVs that are exposed to an immune response. Identification of the cross-reactive and non-cross-reactive N-protein regions allows development of SARS-CoV-specific antibody assays for screening animal and human sera.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vlasova</LastName>
<ForeName>Anastasia N</ForeName>
<Initials>AN</Initials>
<AffiliationInfo>
<Affiliation>Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691-4096, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xinsheng</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hasoksuz</LastName>
<ForeName>Mustafa</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nagesha</LastName>
<ForeName>Hadya S</ForeName>
<Initials>HS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haynes</LastName>
<ForeName>Lia M</ForeName>
<Initials>LM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saif</LastName>
<ForeName>Linda J</ForeName>
<Initials>LJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R21 AI062763</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>10</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000956">Antigens, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007106">Immune Sera</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019590">Nucleocapsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099602">nucleocapsid protein, Coronavirus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000956" MajorTopicYN="N">Antigens, Viral</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002415" MajorTopicYN="N">Cats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002417" MajorTopicYN="N">Cattle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003429" MajorTopicYN="N">Cross Reactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006168" MajorTopicYN="N">Guinea Pigs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007106" MajorTopicYN="N">Immune Sera</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019590" MajorTopicYN="N">Nucleocapsid Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>12</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>10</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17913799</ArticleId>
<ArticleId IdType="pii">JVI.01169-07</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01169-07</ArticleId>
<ArticleId IdType="pmc">PMC2168854</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2004 May;42(5):2351-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Genet Evol. 2003 Sep;3(3):219-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2003 Sep 20;4:43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14499005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2003 Dec;49(12):1989-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14633869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(1):76-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2004 Mar;149(3):621-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14991447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Diagn Lab Immunol. 2004 Mar;11(2):362-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15013989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(7):3572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2004 May 1;189(9):1676-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15116304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(13):6938-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2004 Jul 15;190(2):379-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15216476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Vet Res. 1999 Oct;60(10):1227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10791935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Diagn Lab Immunol. 2001 Mar;8(2):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11238212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 2001 Jan-Mar;45(1):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11332477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Aug;78(15):7863-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15254158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Jul;10(7):1293-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15324552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Sep 15;173(6):4050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15356154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(20):11401-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Nov 12;324(2):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1988;101(3-4):221-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2845894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1995 Dec;33(12):3264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8586714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1997 Nov;35(11):2937-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9350763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2004 Nov;42(11):5309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15528730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Dec 10;325(2):445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15530413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Nov;10(11):1947-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15550204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(1):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2003 Aug;1(3):198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15629032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2620-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Sci Tech. 2004 Aug;23(2):643-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15702725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2005 Mar;11(3):446-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15757562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Apr 11;579(10):2130-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15811330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 Jun 15;191(12):2033-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15897988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2005 Sep;128(1-2):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15885812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Sep;79(18):11892-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16140765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2005;5:73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16171519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2004 Aug;1(4):304-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16225774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Diagn Lab Immunol. 2005 Nov;12(11):1317-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16275947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2006 Feb 13;24(7):1028-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2005 Dec;11(12):1860-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16485471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Vaccine Immunol. 2006 Mar;13(3):409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16522785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol. 2006 Feb;44(1):83-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16554722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2006 Apr 12;24(16):3100-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16494977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 May;80(9):4211-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16611880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:153-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Jan 20;357(2):215-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2006;3:106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Feb 20;358(2):424-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17023013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2003 Aug;9(8):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12928032</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001D13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17913799
   |texte=   Two-way antigenic cross-reactivity between severe acute respiratory syndrome coronavirus (SARS-CoV) and group 1 animal CoVs is mediated through an antigenic site in the N-terminal region of the SARS-CoV nucleoprotein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:17913799" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021