Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion.

Identifieur interne : 001C94 ( PubMed/Corpus ); précédent : 001C93; suivant : 001C95

Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion.

Auteurs : Daniel R. Beniac ; Shauna L. Devarennes ; Anton Andonov ; Runtao He ; Tim F. Booth

Source :

RBID : pubmed:17957264

English descriptors

Abstract

The SARS coronavirus (SARS-CoV) spike is the largest known viral spike molecule, and shares a similar function with all class 1 viral fusion proteins. Previous structural studies of membrane fusion proteins have largely used crystallography of static molecular fragments, in isolation of their transmembrane domains. In this study we have produced purified, irradiated SARS-CoV virions that retain their morphology, and are fusogenic in cell culture. We used cryo-electron microscopy and image processing to investigate conformational changes that occur in the entire spike of intact virions when they bind to the viral receptor, angiotensin-converting enzyme 2 (ACE2). We have shown that ACE2 binding results in structural changes that appear to be the initial step in viral membrane fusion, and precisely localized the receptor-binding and fusion core domains within the entire spike. Furthermore, our results show that receptor binding and subsequent membrane fusion are distinct steps, and that each spike can bind up to three ACE2 molecules. The SARS-CoV spike provides an ideal model system to study receptor binding and membrane fusion in the native state, employing cryo-electron microscopy and single-particle image analysis.

DOI: 10.1371/journal.pone.0001082
PubMed: 17957264

Links to Exploration step

pubmed:17957264

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion.</title>
<author>
<name sortKey="Beniac, Daniel R" sort="Beniac, Daniel R" uniqKey="Beniac D" first="Daniel R" last="Beniac">Daniel R. Beniac</name>
<affiliation>
<nlm:affiliation>Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Devarennes, Shauna L" sort="Devarennes, Shauna L" uniqKey="Devarennes S" first="Shauna L" last="Devarennes">Shauna L. Devarennes</name>
</author>
<author>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
</author>
<author>
<name sortKey="He, Runtao" sort="He, Runtao" uniqKey="He R" first="Runtao" last="He">Runtao He</name>
</author>
<author>
<name sortKey="Booth, Tim F" sort="Booth, Tim F" uniqKey="Booth T" first="Tim F" last="Booth">Tim F. Booth</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17957264</idno>
<idno type="pmid">17957264</idno>
<idno type="doi">10.1371/journal.pone.0001082</idno>
<idno type="wicri:Area/PubMed/Corpus">001C94</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion.</title>
<author>
<name sortKey="Beniac, Daniel R" sort="Beniac, Daniel R" uniqKey="Beniac D" first="Daniel R" last="Beniac">Daniel R. Beniac</name>
<affiliation>
<nlm:affiliation>Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Devarennes, Shauna L" sort="Devarennes, Shauna L" uniqKey="Devarennes S" first="Shauna L" last="Devarennes">Shauna L. Devarennes</name>
</author>
<author>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
</author>
<author>
<name sortKey="He, Runtao" sort="He, Runtao" uniqKey="He R" first="Runtao" last="He">Runtao He</name>
</author>
<author>
<name sortKey="Booth, Tim F" sort="Booth, Tim F" uniqKey="Booth T" first="Tim F" last="Booth">Tim F. Booth</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Cryoelectron Microscopy</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Membrane Fusion</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Microscopy, Immunoelectron</term>
<term>Models, Molecular</term>
<term>Molecular Conformation</term>
<term>Peptidyl-Dipeptidase A (chemistry)</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>SARS Virus (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Vero Cells</term>
<term>Viral Envelope Proteins (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Cryoelectron Microscopy</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Membrane Fusion</term>
<term>Microscopy, Immunoelectron</term>
<term>Models, Molecular</term>
<term>Molecular Conformation</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Vero Cells</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The SARS coronavirus (SARS-CoV) spike is the largest known viral spike molecule, and shares a similar function with all class 1 viral fusion proteins. Previous structural studies of membrane fusion proteins have largely used crystallography of static molecular fragments, in isolation of their transmembrane domains. In this study we have produced purified, irradiated SARS-CoV virions that retain their morphology, and are fusogenic in cell culture. We used cryo-electron microscopy and image processing to investigate conformational changes that occur in the entire spike of intact virions when they bind to the viral receptor, angiotensin-converting enzyme 2 (ACE2). We have shown that ACE2 binding results in structural changes that appear to be the initial step in viral membrane fusion, and precisely localized the receptor-binding and fusion core domains within the entire spike. Furthermore, our results show that receptor binding and subsequent membrane fusion are distinct steps, and that each spike can bind up to three ACE2 molecules. The SARS-CoV spike provides an ideal model system to study receptor binding and membrane fusion in the native state, employing cryo-electron microscopy and single-particle image analysis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17957264</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2007</Year>
<Month>Oct</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion.</ArticleTitle>
<Pagination>
<MedlinePgn>e1082</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The SARS coronavirus (SARS-CoV) spike is the largest known viral spike molecule, and shares a similar function with all class 1 viral fusion proteins. Previous structural studies of membrane fusion proteins have largely used crystallography of static molecular fragments, in isolation of their transmembrane domains. In this study we have produced purified, irradiated SARS-CoV virions that retain their morphology, and are fusogenic in cell culture. We used cryo-electron microscopy and image processing to investigate conformational changes that occur in the entire spike of intact virions when they bind to the viral receptor, angiotensin-converting enzyme 2 (ACE2). We have shown that ACE2 binding results in structural changes that appear to be the initial step in viral membrane fusion, and precisely localized the receptor-binding and fusion core domains within the entire spike. Furthermore, our results show that receptor binding and subsequent membrane fusion are distinct steps, and that each spike can bind up to three ACE2 molecules. The SARS-CoV spike provides an ideal model system to study receptor binding and membrane fusion in the native state, employing cryo-electron microscopy and single-particle image analysis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Beniac</LastName>
<ForeName>Daniel R</ForeName>
<Initials>DR</Initials>
<AffiliationInfo>
<Affiliation>Viral Diseases Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>deVarennes</LastName>
<ForeName>Shauna L</ForeName>
<Initials>SL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Andonov</LastName>
<ForeName>Anton</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Runtao</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Booth</LastName>
<ForeName>Tim F</ForeName>
<Initials>TF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>10</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020285" MajorTopicYN="N">Cryoelectron Microscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008561" MajorTopicYN="N">Membrane Fusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016253" MajorTopicYN="N">Microscopy, Immunoelectron</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>10</Month>
<Day>25</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17957264</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0001082</ArticleId>
<ArticleId IdType="pmc">PMC2034598</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 1999 Dec 1;128(1):82-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10600563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Apr 10;360(2):264-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17134730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14172-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11106388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Rep. 2000 Dec;20(6):597-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11426696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2001 Mar 7;9(3):255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11286892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Oct;75(20):9741-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11559807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Apr;4(4):309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Dec 12;115(6):652-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Apr;2(4):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Feb;2(2):109-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2004 Oct;12(10):466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1982 Jun;119(2):358-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6281979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 19;279(47):49414-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Aug;9(8):1009-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17567241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Aug;13(8):751-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Aug;66(8):4940-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1629960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Oct 13;31(40):9609-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1327122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ultramicroscopy. 1994 Mar;53(3):251-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8160308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Sep 1;371(6492):37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8072525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1996 Jan-Feb;116(1):190-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8742743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 May 22;387(6631):426-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9163431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1997 Dec 15;139(6):1455-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2580-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9482929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Apr;72(4):3278-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Nov;2(5):605-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9844633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2662-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10077567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Mar;3(3):309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10200260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1999 Apr-May;125(2-3):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10222274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;285:25-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17958-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 May 1;191(9):1472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 May 10;335(2):276-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Apr 20;24(8):1634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jan 5;439(7072):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 May;80(9):4211-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16611880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 28;281(17):11965-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 9;281(23):15829-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 10;281(45):34610-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16954221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:531-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001C94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17957264
   |texte=   Conformational reorganization of the SARS coronavirus spike following receptor binding: implications for membrane fusion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:17957264" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021