Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge.

Identifieur interne : 001C34 ( PubMed/Corpus ); précédent : 001C33; suivant : 001C35

Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge.

Auteurs : Barry Rockx ; Davide Corti ; Eric Donaldson ; Timothy Sheahan ; Konrad Stadler ; Antonio Lanzavecchia ; Ralph Baric

Source :

RBID : pubmed:18199635

English descriptors

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002, and detailed phylogenetic and epidemiological analyses have suggested that it originated from animals. The spike (S) glycoprotein has been identified as a major component of protective immunity, and 23 different amino acid changes were noted during the expanding epidemic. Using a panel of SARS-CoV recombinants bearing the S glycoproteins from isolates representing the zoonotic and human early, middle, and late phases of the epidemic, we identified 23 monoclonal antibodies (MAbs) with neutralizing activity against one or multiple SARS-CoV spike variants and determined the presence of at least six distinct neutralizing profiles in the SARS-CoV S glycoprotein. Four of these MAbs showed cross-neutralizing activity against all human and zoonotic S variants in vitro, and at least three of these were mapped in distinct epitopes using escape mutants, structure analyses, and competition assays. These three MAbs (S109.8, S227.14, and S230.15) were tested for use in passive vaccination studies using lethal SARS-CoV challenge models for young and senescent mice with four different homologous and heterologous SARS-CoV S variants. Both S227.14 and S230.15 completely protected young and old mice from weight loss and virus replication in the lungs for all viruses tested, while S109.8 completely protected mice from weight loss and clinical signs in the presence of viral titers. We conclude that a single human MAb can confer broad protection against lethal challenge with multiple zoonotic and human SARS-CoV isolates, and we identify a robust cocktail formulation that targets distinct epitopes and minimizes the likely generation of escape mutants.

DOI: 10.1128/JVI.02377-07
PubMed: 18199635

Links to Exploration step

pubmed:18199635

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge.</title>
<author>
<name sortKey="Rockx, Barry" sort="Rockx, Barry" uniqKey="Rockx B" first="Barry" last="Rockx">Barry Rockx</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, 2107 McGavran-Greenberg, CB#7435, University of North Carolina, Chapel Hill, NC 27699-7435, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corti, Davide" sort="Corti, Davide" uniqKey="Corti D" first="Davide" last="Corti">Davide Corti</name>
</author>
<author>
<name sortKey="Donaldson, Eric" sort="Donaldson, Eric" uniqKey="Donaldson E" first="Eric" last="Donaldson">Eric Donaldson</name>
</author>
<author>
<name sortKey="Sheahan, Timothy" sort="Sheahan, Timothy" uniqKey="Sheahan T" first="Timothy" last="Sheahan">Timothy Sheahan</name>
</author>
<author>
<name sortKey="Stadler, Konrad" sort="Stadler, Konrad" uniqKey="Stadler K" first="Konrad" last="Stadler">Konrad Stadler</name>
</author>
<author>
<name sortKey="Lanzavecchia, Antonio" sort="Lanzavecchia, Antonio" uniqKey="Lanzavecchia A" first="Antonio" last="Lanzavecchia">Antonio Lanzavecchia</name>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18199635</idno>
<idno type="pmid">18199635</idno>
<idno type="doi">10.1128/JVI.02377-07</idno>
<idno type="wicri:Area/PubMed/Corpus">001C34</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C34</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge.</title>
<author>
<name sortKey="Rockx, Barry" sort="Rockx, Barry" uniqKey="Rockx B" first="Barry" last="Rockx">Barry Rockx</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, 2107 McGavran-Greenberg, CB#7435, University of North Carolina, Chapel Hill, NC 27699-7435, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Corti, Davide" sort="Corti, Davide" uniqKey="Corti D" first="Davide" last="Corti">Davide Corti</name>
</author>
<author>
<name sortKey="Donaldson, Eric" sort="Donaldson, Eric" uniqKey="Donaldson E" first="Eric" last="Donaldson">Eric Donaldson</name>
</author>
<author>
<name sortKey="Sheahan, Timothy" sort="Sheahan, Timothy" uniqKey="Sheahan T" first="Timothy" last="Sheahan">Timothy Sheahan</name>
</author>
<author>
<name sortKey="Stadler, Konrad" sort="Stadler, Konrad" uniqKey="Stadler K" first="Konrad" last="Stadler">Konrad Stadler</name>
</author>
<author>
<name sortKey="Lanzavecchia, Antonio" sort="Lanzavecchia, Antonio" uniqKey="Lanzavecchia A" first="Antonio" last="Lanzavecchia">Antonio Lanzavecchia</name>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antibodies, Monoclonal (immunology)</term>
<term>Antibodies, Viral (immunology)</term>
<term>Body Weight</term>
<term>Cross Reactions</term>
<term>Epitope Mapping</term>
<term>Female</term>
<term>Humans</term>
<term>Immunization, Passive</term>
<term>Lung (pathology)</term>
<term>Lung (virology)</term>
<term>Membrane Glycoproteins (immunology)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Models, Molecular</term>
<term>Neutralization Tests</term>
<term>SARS Virus (immunology)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (prevention & control)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Survival Analysis</term>
<term>Viral Envelope Proteins (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Antibodies, Viral</term>
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Body Weight</term>
<term>Cross Reactions</term>
<term>Epitope Mapping</term>
<term>Female</term>
<term>Humans</term>
<term>Immunization, Passive</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Models, Molecular</term>
<term>Neutralization Tests</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Survival Analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002, and detailed phylogenetic and epidemiological analyses have suggested that it originated from animals. The spike (S) glycoprotein has been identified as a major component of protective immunity, and 23 different amino acid changes were noted during the expanding epidemic. Using a panel of SARS-CoV recombinants bearing the S glycoproteins from isolates representing the zoonotic and human early, middle, and late phases of the epidemic, we identified 23 monoclonal antibodies (MAbs) with neutralizing activity against one or multiple SARS-CoV spike variants and determined the presence of at least six distinct neutralizing profiles in the SARS-CoV S glycoprotein. Four of these MAbs showed cross-neutralizing activity against all human and zoonotic S variants in vitro, and at least three of these were mapped in distinct epitopes using escape mutants, structure analyses, and competition assays. These three MAbs (S109.8, S227.14, and S230.15) were tested for use in passive vaccination studies using lethal SARS-CoV challenge models for young and senescent mice with four different homologous and heterologous SARS-CoV S variants. Both S227.14 and S230.15 completely protected young and old mice from weight loss and virus replication in the lungs for all viruses tested, while S109.8 completely protected mice from weight loss and clinical signs in the presence of viral titers. We conclude that a single human MAb can confer broad protection against lethal challenge with multiple zoonotic and human SARS-CoV isolates, and we identify a robust cocktail formulation that targets distinct epitopes and minimizes the likely generation of escape mutants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18199635</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>04</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>82</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2008</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge.</ArticleTitle>
<Pagination>
<MedlinePgn>3220-35</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.02377-07</ELocationID>
<Abstract>
<AbstractText>Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002, and detailed phylogenetic and epidemiological analyses have suggested that it originated from animals. The spike (S) glycoprotein has been identified as a major component of protective immunity, and 23 different amino acid changes were noted during the expanding epidemic. Using a panel of SARS-CoV recombinants bearing the S glycoproteins from isolates representing the zoonotic and human early, middle, and late phases of the epidemic, we identified 23 monoclonal antibodies (MAbs) with neutralizing activity against one or multiple SARS-CoV spike variants and determined the presence of at least six distinct neutralizing profiles in the SARS-CoV S glycoprotein. Four of these MAbs showed cross-neutralizing activity against all human and zoonotic S variants in vitro, and at least three of these were mapped in distinct epitopes using escape mutants, structure analyses, and competition assays. These three MAbs (S109.8, S227.14, and S230.15) were tested for use in passive vaccination studies using lethal SARS-CoV challenge models for young and senescent mice with four different homologous and heterologous SARS-CoV S variants. Both S227.14 and S230.15 completely protected young and old mice from weight loss and virus replication in the lungs for all viruses tested, while S109.8 completely protected mice from weight loss and clinical signs in the presence of viral titers. We conclude that a single human MAb can confer broad protection against lethal challenge with multiple zoonotic and human SARS-CoV isolates, and we identify a robust cocktail formulation that targets distinct epitopes and minimizes the likely generation of escape mutants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rockx</LastName>
<ForeName>Barry</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, 2107 McGavran-Greenberg, CB#7435, University of North Carolina, Chapel Hill, NC 27699-7435, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Corti</LastName>
<ForeName>Davide</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Donaldson</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sheahan</LastName>
<ForeName>Timothy</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stadler</LastName>
<ForeName>Konrad</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lanzavecchia</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AI059443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI059136</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01-AI059136</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01-AI059443</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>01</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000911">Antibodies, Monoclonal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000911" MajorTopicYN="N">Antibodies, Monoclonal</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001835" MajorTopicYN="N">Body Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003429" MajorTopicYN="N">Cross Reactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018604" MajorTopicYN="N">Epitope Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007116" MajorTopicYN="N">Immunization, Passive</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009500" MajorTopicYN="N">Neutralization Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016019" MajorTopicYN="N">Survival Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18199635</ArticleId>
<ArticleId IdType="pii">JVI.02377-07</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.02377-07</ArticleId>
<ArticleId IdType="pmc">PMC2268459</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2000 Aug;47(2):57-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10996394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Dec;25(12):1421-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18066039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Mar 5;315(2):439-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14766227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2004 Feb;4(2):64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14959754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Jan 20;318(2):598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(7):3572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respirology. 2003 Nov;8 Suppl:S9-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15018127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2004 Apr 22;350(17):1740-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15103000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Mar;10(3):413-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2004 Jun 26;363(9427):2139-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Aug;10(8):871-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2004 Sep 15;190(6):1119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Nov 12;324(2):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1995 Mar;2(3):232-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7539711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Mar;70(3):1863-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8627711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 1996;66:55-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8959704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1999 Oct;104(7):903-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10510331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2005 Feb;75(2):185-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15602737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 Feb 15;191(4):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15655773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):797-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(9):5833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15827197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hybridoma (Larchmt). 2005 Apr;24(2):71-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15857170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(10):5900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15857975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2005;5:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15819995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Apr 20;24(8):1634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jul;79(14):9062-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2005 Sep;128(1-2):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15885812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Sep;79(18):11892-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16140765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Sci. 2005 Oct;12(5):711-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Formos Med Assoc. 2005 Oct;104(10):715-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16385373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Mar 1;193(5):685-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 May 15;176(10):6085-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 9;281(23):15829-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:553-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 10;281(45):34610-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16954221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Jul;3(7):e237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16796401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Environ Sci. 2006 Oct;19(5):336-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17190184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Dec;3(12):e525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Mar 8;25(12):2173-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17227689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2007 Apr;120(4):435-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17313487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(8):4033-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Apr 20;25(16):3066-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17275144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2007 May;4(5):e178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17535101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jul;81(14):7410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17620608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8809-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17537847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8784-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17553881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2002 Oct;83(Pt 10):2497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237433</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C34 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001C34 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18199635
   |texte=   Structural basis for potent cross-neutralizing human monoclonal antibody protection against lethal human and zoonotic severe acute respiratory syndrome coronavirus challenge.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18199635" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021