Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway.

Identifieur interne : 001C27 ( PubMed/Corpus ); précédent : 001C26; suivant : 001C28

SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway.

Auteurs : Hongliang Wang ; Peng Yang ; Kangtai Liu ; Feng Guo ; Yanli Zhang ; Gongyi Zhang ; Chengyu Jiang

Source :

RBID : pubmed:18227861

English descriptors

Abstract

While severe acute respiratory syndrome coronavirus (SARS-CoV) was initially thought to enter cells through direct fusion with the plasma membrane, more recent evidence suggests that virus entry may also involve endocytosis. We have found that SARS-CoV enters cells via pH- and receptor-dependent endocytosis. Treatment of cells with either SARS-CoV spike protein or spike-bearing pseudoviruses resulted in the translocation of angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV, from the cell surface to endosomes. In addition, the spike-bearing pseudoviruses and early endosome antigen 1 were found to colocalize in endosomes. Further analyses using specific endocytic pathway inhibitors and dominant-negative Eps15 as well as caveolin-1 colocalization study suggested that virus entry was mediated by a clathrin- and caveolae-independent mechanism. Moreover, cholesterol- and sphingolipid-rich lipid raft microdomains in the plasma membrane, which have been shown to act as platforms for many physiological signaling pathways, were shown to be involved in virus entry. Endocytic entry of SARS-CoV may expand the cellular range of SARS-CoV infection, and our findings here contribute to the understanding of SARS-CoV pathogenesis, providing new information for anti-viral drug research.

DOI: 10.1038/cr.2008.15
PubMed: 18227861

Links to Exploration step

pubmed:18227861

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway.</title>
<author>
<name sortKey="Wang, Hongliang" sort="Wang, Hongliang" uniqKey="Wang H" first="Hongliang" last="Wang">Hongliang Wang</name>
<affiliation>
<nlm:affiliation>National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University and Chinese Academy of Medical Sciences, Beijing 100005, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Peng" sort="Yang, Peng" uniqKey="Yang P" first="Peng" last="Yang">Peng Yang</name>
</author>
<author>
<name sortKey="Liu, Kangtai" sort="Liu, Kangtai" uniqKey="Liu K" first="Kangtai" last="Liu">Kangtai Liu</name>
</author>
<author>
<name sortKey="Guo, Feng" sort="Guo, Feng" uniqKey="Guo F" first="Feng" last="Guo">Feng Guo</name>
</author>
<author>
<name sortKey="Zhang, Yanli" sort="Zhang, Yanli" uniqKey="Zhang Y" first="Yanli" last="Zhang">Yanli Zhang</name>
</author>
<author>
<name sortKey="Zhang, Gongyi" sort="Zhang, Gongyi" uniqKey="Zhang G" first="Gongyi" last="Zhang">Gongyi Zhang</name>
</author>
<author>
<name sortKey="Jiang, Chengyu" sort="Jiang, Chengyu" uniqKey="Jiang C" first="Chengyu" last="Jiang">Chengyu Jiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18227861</idno>
<idno type="pmid">18227861</idno>
<idno type="doi">10.1038/cr.2008.15</idno>
<idno type="wicri:Area/PubMed/Corpus">001C27</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C27</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway.</title>
<author>
<name sortKey="Wang, Hongliang" sort="Wang, Hongliang" uniqKey="Wang H" first="Hongliang" last="Wang">Hongliang Wang</name>
<affiliation>
<nlm:affiliation>National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University and Chinese Academy of Medical Sciences, Beijing 100005, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Peng" sort="Yang, Peng" uniqKey="Yang P" first="Peng" last="Yang">Peng Yang</name>
</author>
<author>
<name sortKey="Liu, Kangtai" sort="Liu, Kangtai" uniqKey="Liu K" first="Kangtai" last="Liu">Kangtai Liu</name>
</author>
<author>
<name sortKey="Guo, Feng" sort="Guo, Feng" uniqKey="Guo F" first="Feng" last="Guo">Feng Guo</name>
</author>
<author>
<name sortKey="Zhang, Yanli" sort="Zhang, Yanli" uniqKey="Zhang Y" first="Yanli" last="Zhang">Yanli Zhang</name>
</author>
<author>
<name sortKey="Zhang, Gongyi" sort="Zhang, Gongyi" uniqKey="Zhang G" first="Gongyi" last="Zhang">Gongyi Zhang</name>
</author>
<author>
<name sortKey="Jiang, Chengyu" sort="Jiang, Chengyu" uniqKey="Jiang C" first="Chengyu" last="Jiang">Chengyu Jiang</name>
</author>
</analytic>
<series>
<title level="j">Cell research</title>
<idno type="eISSN">1748-7838</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Calcium-Binding Proteins (genetics)</term>
<term>Calcium-Binding Proteins (metabolism)</term>
<term>Caveolae (metabolism)</term>
<term>Caveolae (virology)</term>
<term>Caveolin 1 (genetics)</term>
<term>Caveolin 1 (metabolism)</term>
<term>Cell Line</term>
<term>Clathrin (genetics)</term>
<term>Clathrin (metabolism)</term>
<term>Endocytosis (genetics)</term>
<term>Endosomes (metabolism)</term>
<term>Endosomes (virology)</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Intracellular Signaling Peptides and Proteins (genetics)</term>
<term>Intracellular Signaling Peptides and Proteins (metabolism)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Peptidyl-Dipeptidase A (genetics)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Phosphoproteins (genetics)</term>
<term>Phosphoproteins (metabolism)</term>
<term>Protein Transport</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (metabolism)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Severe Acute Respiratory Syndrome (drug therapy)</term>
<term>Severe Acute Respiratory Syndrome (genetics)</term>
<term>Severe Acute Respiratory Syndrome (metabolism)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Calcium-Binding Proteins</term>
<term>Caveolin 1</term>
<term>Clathrin</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Membrane Glycoproteins</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Phosphoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium-Binding Proteins</term>
<term>Caveolin 1</term>
<term>Clathrin</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Membrane Glycoproteins</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Phosphoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Endocytosis</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Caveolae</term>
<term>Endosomes</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Caveolae</term>
<term>Endosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Protein Transport</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">While severe acute respiratory syndrome coronavirus (SARS-CoV) was initially thought to enter cells through direct fusion with the plasma membrane, more recent evidence suggests that virus entry may also involve endocytosis. We have found that SARS-CoV enters cells via pH- and receptor-dependent endocytosis. Treatment of cells with either SARS-CoV spike protein or spike-bearing pseudoviruses resulted in the translocation of angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV, from the cell surface to endosomes. In addition, the spike-bearing pseudoviruses and early endosome antigen 1 were found to colocalize in endosomes. Further analyses using specific endocytic pathway inhibitors and dominant-negative Eps15 as well as caveolin-1 colocalization study suggested that virus entry was mediated by a clathrin- and caveolae-independent mechanism. Moreover, cholesterol- and sphingolipid-rich lipid raft microdomains in the plasma membrane, which have been shown to act as platforms for many physiological signaling pathways, were shown to be involved in virus entry. Endocytic entry of SARS-CoV may expand the cellular range of SARS-CoV infection, and our findings here contribute to the understanding of SARS-CoV pathogenesis, providing new information for anti-viral drug research.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18227861</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>03</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1748-7838</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2008</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Cell research</Title>
<ISOAbbreviation>Cell Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>290-301</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/cr.2008.15</ELocationID>
<Abstract>
<AbstractText>While severe acute respiratory syndrome coronavirus (SARS-CoV) was initially thought to enter cells through direct fusion with the plasma membrane, more recent evidence suggests that virus entry may also involve endocytosis. We have found that SARS-CoV enters cells via pH- and receptor-dependent endocytosis. Treatment of cells with either SARS-CoV spike protein or spike-bearing pseudoviruses resulted in the translocation of angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV, from the cell surface to endosomes. In addition, the spike-bearing pseudoviruses and early endosome antigen 1 were found to colocalize in endosomes. Further analyses using specific endocytic pathway inhibitors and dominant-negative Eps15 as well as caveolin-1 colocalization study suggested that virus entry was mediated by a clathrin- and caveolae-independent mechanism. Moreover, cholesterol- and sphingolipid-rich lipid raft microdomains in the plasma membrane, which have been shown to act as platforms for many physiological signaling pathways, were shown to be involved in virus entry. Endocytic entry of SARS-CoV may expand the cellular range of SARS-CoV infection, and our findings here contribute to the understanding of SARS-CoV pathogenesis, providing new information for anti-viral drug research.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Hongliang</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Tsinghua University and Chinese Academy of Medical Sciences, Beijing 100005, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Kangtai</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yanli</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Gongyi</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Chengyu</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cell Res</MedlineTA>
<NlmUniqueID>9425763</NlmUniqueID>
<ISSNLinking>1001-0602</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495540">CAV1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002135">Calcium-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051242">Caveolin 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002966">Clathrin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C486206">EPS15 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047908">Intracellular Signaling Peptides and Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010750">Phosphoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002135" MajorTopicYN="N">Calcium-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021941" MajorTopicYN="N">Caveolae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051242" MajorTopicYN="N">Caveolin 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002966" MajorTopicYN="N">Clathrin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004705" MajorTopicYN="Y">Endocytosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047908" MajorTopicYN="N">Intracellular Signaling Peptides and Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010750" MajorTopicYN="N">Phosphoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18227861</ArticleId>
<ArticleId IdType="pii">cr200815</ArticleId>
<ArticleId IdType="doi">10.1038/cr.2008.15</ArticleId>
<ArticleId IdType="pmc">PMC7091891</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 May;76(10):4709-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967288</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2004 Apr 10;321(2):181-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15051379</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3846-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731278</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Feb 4;275(5):3288-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652316</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Virol. 2003 Nov;71(3):323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12966536</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 1994 Sep 1;302 ( Pt 2):313-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8092981</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Sci. 1999 May;112 ( Pt 9):1303-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10194409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microbes Infect. 2007 Jan;9(1):96-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Gene Ther. 2000 Oct;7(19):1613-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11083469</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Oct;78(19):10628-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367630</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 1975 Aug 7;256(5517):495-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1172191</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Oct;76(20):10455-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12239322</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 May;76(10):5266-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microbiol Immunol. 2004;48(11):823-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15557740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Dec 30;1746(3):334-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214243</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8722-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17522231</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1998 May 18;141(4):905-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9585410</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1993 Dec;123(5):1107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8245121</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1981 Dec;91(3 Pt 1):601-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7328111</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2003 Jul;3(7):557-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12876558</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Virol. 2004 Jul;73(3):332-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170625</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2007 Feb;88(Pt 2):559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17251575</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Biol Lett. 2004;9(1):47-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15048150</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1983 Aug;97(2):329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6309857</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Cell Biol. 2003 Aug;15(4):414-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892781</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Mar;78(5):2310-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Physiol. 1996 Sep;271(3 Pt 1):C887-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8843719</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1983 Apr;80(8):2258-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6300903</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):6964-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809302</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2002 Jul;83(Pt 7):1535-1545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12075072</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Feb 10;281(6):3198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339146</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Aug;61(16):2100-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316659</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Biol. 2000 Aug 24;10(16):1005-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10985390</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2005 Aug;11(8):875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007097</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Drug Discov Today. 2005 Mar 1;10(5):345-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749283</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochimie. 1986 Mar;68(3):375-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2874839</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Dec;80(23):11571-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005647</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2006 Sep;87(Pt 9):2583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16894197</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antivir Chem Chemother. 2005;16(1):23-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15739619</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001C27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18227861
   |texte=   SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18227861" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021