Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein.

Identifieur interne : 001B81 ( PubMed/Corpus ); précédent : 001B80; suivant : 001B82

Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein.

Auteurs : Filippo Pacciarini ; Silvia Ghezzi ; Filippo Canducci ; Amy Sims ; Michela Sampaolo ; Elena Ferioli ; Massimo Clementi ; Guido Poli ; Pier Giulio Conaldi ; Ralph Baric ; Elisa Vicenzi

Source :

RBID : pubmed:18367528

English descriptors

Abstract

Severe acute respiratory syndrome (SARS) is a systemic disease characterized by both lung pathology and widespread extrapulmonary virus dissemination causing multiple organ injuries. In this regard, renal dysfunction is an ominous sign in patients with SARS. Indeed, clusters of SARS coronavirus (SARS-CoV) particles have been detected in the cytoplasm of renal tubular epithelial cells in postmortem studies, explaining the presence of infectious virus in the urine of SARS patients. In order to investigate the potential SARS-CoV kidney tropism, we have evaluated the susceptibility of human renal cells of tubular and glomerular origin to in vitro SARS-CoV infection. Immortalized cultures of differentiated proximal tubular epithelial cells (PTEC), glomerular mesangial cells (MC), and glomerular epithelial cells (podocytes) were found to express the SARS-CoV receptor angiotensin-converting enzyme 2 on their surface. Productive infection, however, occurred only in PTEC but not in glomerular cells. A transient infection with poor virus production was observed in MC, whereas podocytes were not permissive to SARS-CoV infection. In contrast to the cytopathic infection of the Vero E6 cell line, SARS-CoV did not cause overt cytopathic effects in PTEC or MC. Of interest, PTEC, but not MC, maintained stable levels of SARS-CoV production in serial subcultures, suggesting a persistent state of infection. In this regard, a SARS-CoV variant with increased replication capacity in PTEC was selected after four serial subculture passages. This SARS-CoV variant acquired a single nonconservative amino acid change from glutamic acid (E) to alanine (A) at position 11 in the viral membrane (M) protein. The E11A point mutation was sufficient for enhanced SARS-CoV replication and persistence in PTEC when introduced in a SARS-CoV recombinant infectious clone. These findings indicate that human PTEC may represent a site of SARS-CoV productive and persistent replication favoring the emergence of viral variants with increased replication capacity, at least in these kidney cells.

DOI: 10.1128/JVI.00096-08
PubMed: 18367528

Links to Exploration step

pubmed:18367528

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein.</title>
<author>
<name sortKey="Pacciarini, Filippo" sort="Pacciarini, Filippo" uniqKey="Pacciarini F" first="Filippo" last="Pacciarini">Filippo Pacciarini</name>
<affiliation>
<nlm:affiliation>Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghezzi, Silvia" sort="Ghezzi, Silvia" uniqKey="Ghezzi S" first="Silvia" last="Ghezzi">Silvia Ghezzi</name>
</author>
<author>
<name sortKey="Canducci, Filippo" sort="Canducci, Filippo" uniqKey="Canducci F" first="Filippo" last="Canducci">Filippo Canducci</name>
</author>
<author>
<name sortKey="Sims, Amy" sort="Sims, Amy" uniqKey="Sims A" first="Amy" last="Sims">Amy Sims</name>
</author>
<author>
<name sortKey="Sampaolo, Michela" sort="Sampaolo, Michela" uniqKey="Sampaolo M" first="Michela" last="Sampaolo">Michela Sampaolo</name>
</author>
<author>
<name sortKey="Ferioli, Elena" sort="Ferioli, Elena" uniqKey="Ferioli E" first="Elena" last="Ferioli">Elena Ferioli</name>
</author>
<author>
<name sortKey="Clementi, Massimo" sort="Clementi, Massimo" uniqKey="Clementi M" first="Massimo" last="Clementi">Massimo Clementi</name>
</author>
<author>
<name sortKey="Poli, Guido" sort="Poli, Guido" uniqKey="Poli G" first="Guido" last="Poli">Guido Poli</name>
</author>
<author>
<name sortKey="Conaldi, Pier Giulio" sort="Conaldi, Pier Giulio" uniqKey="Conaldi P" first="Pier Giulio" last="Conaldi">Pier Giulio Conaldi</name>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
</author>
<author>
<name sortKey="Vicenzi, Elisa" sort="Vicenzi, Elisa" uniqKey="Vicenzi E" first="Elisa" last="Vicenzi">Elisa Vicenzi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18367528</idno>
<idno type="pmid">18367528</idno>
<idno type="doi">10.1128/JVI.00096-08</idno>
<idno type="wicri:Area/PubMed/Corpus">001B81</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001B81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein.</title>
<author>
<name sortKey="Pacciarini, Filippo" sort="Pacciarini, Filippo" uniqKey="Pacciarini F" first="Filippo" last="Pacciarini">Filippo Pacciarini</name>
<affiliation>
<nlm:affiliation>Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghezzi, Silvia" sort="Ghezzi, Silvia" uniqKey="Ghezzi S" first="Silvia" last="Ghezzi">Silvia Ghezzi</name>
</author>
<author>
<name sortKey="Canducci, Filippo" sort="Canducci, Filippo" uniqKey="Canducci F" first="Filippo" last="Canducci">Filippo Canducci</name>
</author>
<author>
<name sortKey="Sims, Amy" sort="Sims, Amy" uniqKey="Sims A" first="Amy" last="Sims">Amy Sims</name>
</author>
<author>
<name sortKey="Sampaolo, Michela" sort="Sampaolo, Michela" uniqKey="Sampaolo M" first="Michela" last="Sampaolo">Michela Sampaolo</name>
</author>
<author>
<name sortKey="Ferioli, Elena" sort="Ferioli, Elena" uniqKey="Ferioli E" first="Elena" last="Ferioli">Elena Ferioli</name>
</author>
<author>
<name sortKey="Clementi, Massimo" sort="Clementi, Massimo" uniqKey="Clementi M" first="Massimo" last="Clementi">Massimo Clementi</name>
</author>
<author>
<name sortKey="Poli, Guido" sort="Poli, Guido" uniqKey="Poli G" first="Guido" last="Poli">Guido Poli</name>
</author>
<author>
<name sortKey="Conaldi, Pier Giulio" sort="Conaldi, Pier Giulio" uniqKey="Conaldi P" first="Pier Giulio" last="Conaldi">Pier Giulio Conaldi</name>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
</author>
<author>
<name sortKey="Vicenzi, Elisa" sort="Vicenzi, Elisa" uniqKey="Vicenzi E" first="Elisa" last="Vicenzi">Elisa Vicenzi</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Biological (genetics)</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Cell Survival</term>
<term>Chlorocebus aethiops</term>
<term>Epithelial Cells (enzymology)</term>
<term>Humans</term>
<term>Kidney (cytology)</term>
<term>Kidney (metabolism)</term>
<term>Kinetics</term>
<term>Mutation (genetics)</term>
<term>Peptidyl-Dipeptidase A (genetics)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>SARS Virus (physiology)</term>
<term>Viral Matrix Proteins (genetics)</term>
<term>Viral Matrix Proteins (metabolism)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Kidney</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Epithelial Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Kidney</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Viral Matrix Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Cell Survival</term>
<term>Chlorocebus aethiops</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Virus Replication</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome (SARS) is a systemic disease characterized by both lung pathology and widespread extrapulmonary virus dissemination causing multiple organ injuries. In this regard, renal dysfunction is an ominous sign in patients with SARS. Indeed, clusters of SARS coronavirus (SARS-CoV) particles have been detected in the cytoplasm of renal tubular epithelial cells in postmortem studies, explaining the presence of infectious virus in the urine of SARS patients. In order to investigate the potential SARS-CoV kidney tropism, we have evaluated the susceptibility of human renal cells of tubular and glomerular origin to in vitro SARS-CoV infection. Immortalized cultures of differentiated proximal tubular epithelial cells (PTEC), glomerular mesangial cells (MC), and glomerular epithelial cells (podocytes) were found to express the SARS-CoV receptor angiotensin-converting enzyme 2 on their surface. Productive infection, however, occurred only in PTEC but not in glomerular cells. A transient infection with poor virus production was observed in MC, whereas podocytes were not permissive to SARS-CoV infection. In contrast to the cytopathic infection of the Vero E6 cell line, SARS-CoV did not cause overt cytopathic effects in PTEC or MC. Of interest, PTEC, but not MC, maintained stable levels of SARS-CoV production in serial subcultures, suggesting a persistent state of infection. In this regard, a SARS-CoV variant with increased replication capacity in PTEC was selected after four serial subculture passages. This SARS-CoV variant acquired a single nonconservative amino acid change from glutamic acid (E) to alanine (A) at position 11 in the viral membrane (M) protein. The E11A point mutation was sufficient for enhanced SARS-CoV replication and persistence in PTEC when introduced in a SARS-CoV recombinant infectious clone. These findings indicate that human PTEC may represent a site of SARS-CoV productive and persistent replication favoring the emergence of viral variants with increased replication capacity, at least in these kidney cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18367528</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>82</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein.</ArticleTitle>
<Pagination>
<MedlinePgn>5137-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00096-08</ELocationID>
<Abstract>
<AbstractText>Severe acute respiratory syndrome (SARS) is a systemic disease characterized by both lung pathology and widespread extrapulmonary virus dissemination causing multiple organ injuries. In this regard, renal dysfunction is an ominous sign in patients with SARS. Indeed, clusters of SARS coronavirus (SARS-CoV) particles have been detected in the cytoplasm of renal tubular epithelial cells in postmortem studies, explaining the presence of infectious virus in the urine of SARS patients. In order to investigate the potential SARS-CoV kidney tropism, we have evaluated the susceptibility of human renal cells of tubular and glomerular origin to in vitro SARS-CoV infection. Immortalized cultures of differentiated proximal tubular epithelial cells (PTEC), glomerular mesangial cells (MC), and glomerular epithelial cells (podocytes) were found to express the SARS-CoV receptor angiotensin-converting enzyme 2 on their surface. Productive infection, however, occurred only in PTEC but not in glomerular cells. A transient infection with poor virus production was observed in MC, whereas podocytes were not permissive to SARS-CoV infection. In contrast to the cytopathic infection of the Vero E6 cell line, SARS-CoV did not cause overt cytopathic effects in PTEC or MC. Of interest, PTEC, but not MC, maintained stable levels of SARS-CoV production in serial subcultures, suggesting a persistent state of infection. In this regard, a SARS-CoV variant with increased replication capacity in PTEC was selected after four serial subculture passages. This SARS-CoV variant acquired a single nonconservative amino acid change from glutamic acid (E) to alanine (A) at position 11 in the viral membrane (M) protein. The E11A point mutation was sufficient for enhanced SARS-CoV replication and persistence in PTEC when introduced in a SARS-CoV recombinant infectious clone. These findings indicate that human PTEC may represent a site of SARS-CoV productive and persistent replication favoring the emergence of viral variants with increased replication capacity, at least in these kidney cells.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pacciarini</LastName>
<ForeName>Filippo</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Milano, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghezzi</LastName>
<ForeName>Silvia</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Canducci</LastName>
<ForeName>Filippo</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sims</LastName>
<ForeName>Amy</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sampaolo</LastName>
<ForeName>Michela</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ferioli</LastName>
<ForeName>Elena</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Clementi</LastName>
<ForeName>Massimo</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poli</LastName>
<ForeName>Guido</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Conaldi</LastName>
<ForeName>Pier Giulio</ForeName>
<Initials>PG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vicenzi</LastName>
<ForeName>Elisa</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>03</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000220" MajorTopicYN="N">Adaptation, Biological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002470" MajorTopicYN="N">Cell Survival</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007668" MajorTopicYN="N">Kidney</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18367528</ArticleId>
<ArticleId IdType="pii">JVI.00096-08</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00096-08</ArticleId>
<ArticleId IdType="pmc">PMC2395189</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Pathol. 2004 Feb;202(2):157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14743497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 Jun;111(11):1605-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12782660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Mar;10(3):413-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):622-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2004 Sep;74(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2004 Sep 6;4:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Sep;10(9):1550-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15498155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1983;2(10):1839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6196191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Invest. 1985 Aug;53(2):122-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3894792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 1990 Nov;38(5):795-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2266661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 1994 Feb;45(2):300-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8164413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1997 Mar;175(3):693-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9041346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 1997 Mar;129(3):318-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9042817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9180-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1998 Dec 15;102(12):2041-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9854039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 Jan 15;191(2):193-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:31-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 2005 Feb;67(2):698-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15673319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Kidney Dis. 2005 Jan;45(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15696447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jun 30;1741(1-2):4-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15916886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2005 Aug;17(4):404-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15950449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2005 Aug 1;202(3):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfus Med. 2005 Aug;15(4):269-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2005 Dec;7(15):1530-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 10;281(6):3198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 2000 Sep 8;14(13):2045-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10997410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2002 Jul;161(1):53-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12107089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2003 Oct;41(10):4521-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14532176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 Dec 18;349(25):2431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jan 30;314(1):235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14715271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 May;80(9):4211-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16611880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 May;3(5):e149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16605302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):548-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Mar;81(5):2418-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17166901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2007;25:443-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17243893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):12029-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 17;361(9370):1701-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12767737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001B81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18367528
   |texte=   Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18367528" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021