Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method.

Identifieur interne : 001B20 ( PubMed/Corpus ); précédent : 001B19; suivant : 001B21

Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method.

Auteurs : Mitsuhiro Takeda ; Chung-Ke Chang ; Teppei Ikeya ; Peter Güntert ; Yuan-Hsiang Chang ; Yen-Lan Hsu ; Tai-Huang Huang ; Masatsune Kainosho

Source :

RBID : pubmed:18561946

English descriptors

Abstract

The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform (13)C and (15)N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the beta-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.

DOI: 10.1016/j.jmb.2007.11.093
PubMed: 18561946

Links to Exploration step

pubmed:18561946

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method.</title>
<author>
<name sortKey="Takeda, Mitsuhiro" sort="Takeda, Mitsuhiro" uniqKey="Takeda M" first="Mitsuhiro" last="Takeda">Mitsuhiro Takeda</name>
<affiliation>
<nlm:affiliation>Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chang, Chung Ke" sort="Chang, Chung Ke" uniqKey="Chang C" first="Chung-Ke" last="Chang">Chung-Ke Chang</name>
</author>
<author>
<name sortKey="Ikeya, Teppei" sort="Ikeya, Teppei" uniqKey="Ikeya T" first="Teppei" last="Ikeya">Teppei Ikeya</name>
</author>
<author>
<name sortKey="Guntert, Peter" sort="Guntert, Peter" uniqKey="Guntert P" first="Peter" last="Güntert">Peter Güntert</name>
</author>
<author>
<name sortKey="Chang, Yuan Hsiang" sort="Chang, Yuan Hsiang" uniqKey="Chang Y" first="Yuan-Hsiang" last="Chang">Yuan-Hsiang Chang</name>
</author>
<author>
<name sortKey="Hsu, Yen Lan" sort="Hsu, Yen Lan" uniqKey="Hsu Y" first="Yen-Lan" last="Hsu">Yen-Lan Hsu</name>
</author>
<author>
<name sortKey="Huang, Tai Huang" sort="Huang, Tai Huang" uniqKey="Huang T" first="Tai-Huang" last="Huang">Tai-Huang Huang</name>
</author>
<author>
<name sortKey="Kainosho, Masatsune" sort="Kainosho, Masatsune" uniqKey="Kainosho M" first="Masatsune" last="Kainosho">Masatsune Kainosho</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18561946</idno>
<idno type="pmid">18561946</idno>
<idno type="doi">10.1016/j.jmb.2007.11.093</idno>
<idno type="wicri:Area/PubMed/Corpus">001B20</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001B20</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method.</title>
<author>
<name sortKey="Takeda, Mitsuhiro" sort="Takeda, Mitsuhiro" uniqKey="Takeda M" first="Mitsuhiro" last="Takeda">Mitsuhiro Takeda</name>
<affiliation>
<nlm:affiliation>Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chang, Chung Ke" sort="Chang, Chung Ke" uniqKey="Chang C" first="Chung-Ke" last="Chang">Chung-Ke Chang</name>
</author>
<author>
<name sortKey="Ikeya, Teppei" sort="Ikeya, Teppei" uniqKey="Ikeya T" first="Teppei" last="Ikeya">Teppei Ikeya</name>
</author>
<author>
<name sortKey="Guntert, Peter" sort="Guntert, Peter" uniqKey="Guntert P" first="Peter" last="Güntert">Peter Güntert</name>
</author>
<author>
<name sortKey="Chang, Yuan Hsiang" sort="Chang, Yuan Hsiang" uniqKey="Chang Y" first="Yuan-Hsiang" last="Chang">Yuan-Hsiang Chang</name>
</author>
<author>
<name sortKey="Hsu, Yen Lan" sort="Hsu, Yen Lan" uniqKey="Hsu Y" first="Yen-Lan" last="Hsu">Yen-Lan Hsu</name>
</author>
<author>
<name sortKey="Huang, Tai Huang" sort="Huang, Tai Huang" uniqKey="Huang T" first="Tai-Huang" last="Huang">Tai-Huang Huang</name>
</author>
<author>
<name sortKey="Kainosho, Masatsune" sort="Kainosho, Masatsune" uniqKey="Kainosho M" first="Masatsune" last="Kainosho">Masatsune Kainosho</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="eISSN">1089-8638</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Crystallography, X-Ray</term>
<term>Dimerization</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Molecular Structure</term>
<term>Mutagenesis, Site-Directed</term>
<term>Nuclear Magnetic Resonance, Biomolecular (methods)</term>
<term>Nucleocapsid Proteins (chemistry)</term>
<term>Nucleocapsid Proteins (genetics)</term>
<term>Protein Structure, Quaternary</term>
<term>Protein Structure, Tertiary</term>
<term>Ribonucleoproteins (chemistry)</term>
<term>Ribonucleoproteins (metabolism)</term>
<term>SARS Virus (chemistry)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Nucleocapsid Proteins</term>
<term>Ribonucleoproteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Nucleocapsid Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ribonucleoproteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Nuclear Magnetic Resonance, Biomolecular</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Crystallography, X-Ray</term>
<term>Dimerization</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Molecular Structure</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Structure, Quaternary</term>
<term>Protein Structure, Tertiary</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform (13)C and (15)N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the beta-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18561946</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>07</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1089-8638</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>380</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jul</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method.</ArticleTitle>
<Pagination>
<MedlinePgn>608-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmb.2007.11.093</ELocationID>
<Abstract>
<AbstractText>The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform (13)C and (15)N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the beta-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Takeda</LastName>
<ForeName>Mitsuhiro</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Chung-ke</ForeName>
<Initials>CK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ikeya</LastName>
<ForeName>Teppei</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Güntert</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Yuan-hsiang</ForeName>
<Initials>YH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hsu</LastName>
<ForeName>Yen-lan</ForeName>
<Initials>YL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Tai-huang</ForeName>
<Initials>TH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kainosho</LastName>
<ForeName>Masatsune</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2JW8</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2007</Year>
<Month>12</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019590">Nucleocapsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012261">Ribonucleoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099602">nucleocapsid protein, Coronavirus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015394" MajorTopicYN="N">Molecular Structure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019906" MajorTopicYN="N">Nuclear Magnetic Resonance, Biomolecular</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019590" MajorTopicYN="N">Nucleocapsid Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="Y">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012261" MajorTopicYN="N">Ribonucleoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2007</Year>
<Month>11</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2007</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18561946</ArticleId>
<ArticleId IdType="pii">S0022-2836(07)01593-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2007.11.093</ArticleId>
<ArticleId IdType="pmc">PMC7094413</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2006 Aug 02;34(13):3634-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16885237</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 Jun 23;281(25):17134-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16627473</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15738986</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1997 Oct 17;273(1):283-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367762</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2006 Mar 2;440(7080):52-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16511487</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8868-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomol NMR. 2004 Nov;30(3):311-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15754057</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jul;80(13):6612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16775348</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2005 Sep 14;127(36):12620-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16144410</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2007 Nov 15;69(3):449-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17623851</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Jun;8(6):479-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17473849</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FASEB J. 2004 Aug;18(11):1169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15284216</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biomed Sci. 2006 Jan;13(1):59-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2005 Oct 24;579(25):5663-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214138</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2007 May 11;368(4):1075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17379242</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biopolymers. 1983 Dec;22(12):2577-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6667333</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 May 25;43(20):6059-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147189</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2003 Nov 12;125(45):13868-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14599227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2007 Jan 20;357(2):215-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979208</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1981 Jul 10;9(13):3047-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6269071</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B20 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001B20 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:18561946
   |texte=   Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:18561946" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021