Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein.

Identifieur interne : 001919 ( PubMed/Corpus ); précédent : 001918; suivant : 001920

Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein.

Auteurs : Eric C. Freundt ; Li Yu ; Elizabeth Park ; Michael J. Lenardo ; Xiao-Ning Xu

Source :

RBID : pubmed:19403678

English descriptors

Abstract

Viruses such as hepatitis C and the severe acute respiratory syndrome coronavirus (SARS-CoV) encode proteins that are distributed between mitochondria and the nucleus, but little is known about the factors that control partitioning between these sites. SARS-CoV encodes a unique accessory gene called open reading frame (ORF) 3b that, like other unique accessory genes in SARS-CoV, likely contributes to viral pathogenicity. The ORF 3b protein is 154 amino acids and is predicted to express from the second ORF in subgenomic RNA3. In this report, we have characterized the molecular components that regulate intracellular localization of the ORF 3b protein. We demonstrate unique shuttling behavior of ORF 3b, whereby the protein initially accumulates in the nucleus and subsequently translocates to mitochondria. Following nuclear localization, ORF 3b traffics to the outer membrane of mitochondria via a predicted amphipathic alpha-helix. Additionally, ORF 3b contains a consensus nuclear export sequence, and we demonstrate that nuclear export and thus mitochondrial translocation are dependent on a leptomycin B-sensitive nuclear export mechanism. We further show that ORF 3b inhibits induction of type I interferon induced by retinoic acid-induced gene 1 and the mitochondrial antiviral signaling protein. Our observations provide insights into the cellular localization of ORF 3b that may enhance our understanding of the mechanisms by which ORF 3b contributes to SARS-CoV pathogenesis. The findings reported here reveal that for multilocalized proteins, consideration of the spatiotemporal distribution may be crucial for understanding viral protein behavior and function.

DOI: 10.1128/JVI.00367-09
PubMed: 19403678

Links to Exploration step

pubmed:19403678

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein.</title>
<author>
<name sortKey="Freundt, Eric C" sort="Freundt, Eric C" uniqKey="Freundt E" first="Eric C" last="Freundt">Eric C. Freundt</name>
<affiliation>
<nlm:affiliation>Laboratory of Immunology, Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, Li" sort="Yu, Li" uniqKey="Yu L" first="Li" last="Yu">Li Yu</name>
</author>
<author>
<name sortKey="Park, Elizabeth" sort="Park, Elizabeth" uniqKey="Park E" first="Elizabeth" last="Park">Elizabeth Park</name>
</author>
<author>
<name sortKey="Lenardo, Michael J" sort="Lenardo, Michael J" uniqKey="Lenardo M" first="Michael J" last="Lenardo">Michael J. Lenardo</name>
</author>
<author>
<name sortKey="Xu, Xiao Ning" sort="Xu, Xiao Ning" uniqKey="Xu X" first="Xiao-Ning" last="Xu">Xiao-Ning Xu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19403678</idno>
<idno type="pmid">19403678</idno>
<idno type="doi">10.1128/JVI.00367-09</idno>
<idno type="wicri:Area/PubMed/Corpus">001919</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001919</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein.</title>
<author>
<name sortKey="Freundt, Eric C" sort="Freundt, Eric C" uniqKey="Freundt E" first="Eric C" last="Freundt">Eric C. Freundt</name>
<affiliation>
<nlm:affiliation>Laboratory of Immunology, Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yu, Li" sort="Yu, Li" uniqKey="Yu L" first="Li" last="Yu">Li Yu</name>
</author>
<author>
<name sortKey="Park, Elizabeth" sort="Park, Elizabeth" uniqKey="Park E" first="Elizabeth" last="Park">Elizabeth Park</name>
</author>
<author>
<name sortKey="Lenardo, Michael J" sort="Lenardo, Michael J" uniqKey="Lenardo M" first="Michael J" last="Lenardo">Michael J. Lenardo</name>
</author>
<author>
<name sortKey="Xu, Xiao Ning" sort="Xu, Xiao Ning" uniqKey="Xu X" first="Xiao-Ning" last="Xu">Xiao-Ning Xu</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active Transport, Cell Nucleus</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Nucleus (metabolism)</term>
<term>Chlorocebus aethiops</term>
<term>Humans</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Membranes (metabolism)</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Open Reading Frames</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (metabolism)</term>
<term>Vero Cells</term>
<term>Viral Structural Proteins (genetics)</term>
<term>Viral Structural Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Viral Structural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Mitochondria</term>
<term>Mitochondrial Membranes</term>
<term>SARS Virus</term>
<term>Viral Structural Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Active Transport, Cell Nucleus</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Humans</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Open Reading Frames</term>
<term>Vero Cells</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Viruses such as hepatitis C and the severe acute respiratory syndrome coronavirus (SARS-CoV) encode proteins that are distributed between mitochondria and the nucleus, but little is known about the factors that control partitioning between these sites. SARS-CoV encodes a unique accessory gene called open reading frame (ORF) 3b that, like other unique accessory genes in SARS-CoV, likely contributes to viral pathogenicity. The ORF 3b protein is 154 amino acids and is predicted to express from the second ORF in subgenomic RNA3. In this report, we have characterized the molecular components that regulate intracellular localization of the ORF 3b protein. We demonstrate unique shuttling behavior of ORF 3b, whereby the protein initially accumulates in the nucleus and subsequently translocates to mitochondria. Following nuclear localization, ORF 3b traffics to the outer membrane of mitochondria via a predicted amphipathic alpha-helix. Additionally, ORF 3b contains a consensus nuclear export sequence, and we demonstrate that nuclear export and thus mitochondrial translocation are dependent on a leptomycin B-sensitive nuclear export mechanism. We further show that ORF 3b inhibits induction of type I interferon induced by retinoic acid-induced gene 1 and the mitochondrial antiviral signaling protein. Our observations provide insights into the cellular localization of ORF 3b that may enhance our understanding of the mechanisms by which ORF 3b contributes to SARS-CoV pathogenesis. The findings reported here reveal that for multilocalized proteins, consideration of the spatiotemporal distribution may be crucial for understanding viral protein behavior and function.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19403678</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>06</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>83</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein.</ArticleTitle>
<Pagination>
<MedlinePgn>6631-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00367-09</ELocationID>
<Abstract>
<AbstractText>Viruses such as hepatitis C and the severe acute respiratory syndrome coronavirus (SARS-CoV) encode proteins that are distributed between mitochondria and the nucleus, but little is known about the factors that control partitioning between these sites. SARS-CoV encodes a unique accessory gene called open reading frame (ORF) 3b that, like other unique accessory genes in SARS-CoV, likely contributes to viral pathogenicity. The ORF 3b protein is 154 amino acids and is predicted to express from the second ORF in subgenomic RNA3. In this report, we have characterized the molecular components that regulate intracellular localization of the ORF 3b protein. We demonstrate unique shuttling behavior of ORF 3b, whereby the protein initially accumulates in the nucleus and subsequently translocates to mitochondria. Following nuclear localization, ORF 3b traffics to the outer membrane of mitochondria via a predicted amphipathic alpha-helix. Additionally, ORF 3b contains a consensus nuclear export sequence, and we demonstrate that nuclear export and thus mitochondrial translocation are dependent on a leptomycin B-sensitive nuclear export mechanism. We further show that ORF 3b inhibits induction of type I interferon induced by retinoic acid-induced gene 1 and the mitochondrial antiviral signaling protein. Our observations provide insights into the cellular localization of ORF 3b that may enhance our understanding of the mechanisms by which ORF 3b contributes to SARS-CoV pathogenesis. The findings reported here reveal that for multilocalized proteins, consideration of the spatiotemporal distribution may be crucial for understanding viral protein behavior and function.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Freundt</LastName>
<ForeName>Eric C</ForeName>
<Initials>EC</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Immunology, Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Park</LastName>
<ForeName>Elizabeth</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lenardo</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Xiao-Ning</ForeName>
<Initials>XN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MC_U137881015</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015678">Viral Structural Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D021581" MajorTopicYN="N">Active Transport, Cell Nucleus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051336" MajorTopicYN="N">Mitochondrial Membranes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="Y">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015678" MajorTopicYN="N">Viral Structural Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19403678</ArticleId>
<ArticleId IdType="pii">JVI.00367-09</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00367-09</ArticleId>
<ArticleId IdType="pmc">PMC2698541</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2001 Apr;82(Pt 4):871-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11257193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Nov;82(21):10946-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18715912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Aug 15;20(16):4325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 24;276(34):31945-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2001 Dec;7(12):1306-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Results Probl Cell Differ. 2002;35:67-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11791409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 13;277(37):34424-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1377-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12775826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Jul;77(13):7214-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2003 Sep;95(1-2):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12921992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2003 Sep;95(1-2):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12921997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viral Immunol. 2003;16(4):461-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14733734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Jul 1;324(2):251-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15207612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2004 Jul;5(7):730-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Oct;15(10):4749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15292455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Aug 11;82(3):475-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7543368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Sep 19;90(6):1051-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9323133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(10):892-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 1999 Aug 5;18(31):4505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10442641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Dec 6;1659(2-3):178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15576050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):1271-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2079-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(5):3182-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15709039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2005 Mar;15(3):121-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005;2:66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16107218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mod Pathol. 2005 Nov;18(11):1432-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15920543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2005 Dec;114(1-2):70-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16046244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(23):14909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17539-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16314558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2006 Apr 30;21(2):186-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16682811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Aug 7;25(34):4725-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16892086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2006 Dec;122(1-2):20-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16965829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):964-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2000 Jan 3;191(1):33-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10620603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 26;275(21):16202-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10821866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Aug 18;289(5482):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10947977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Nov 10;277(1):127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Feb;75(3):1522-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):548-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17438296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 May;81(10):5423-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 22;276(25):22797-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11287420</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001919 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001919 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19403678
   |texte=   Molecular determinants for subcellular localization of the severe acute respiratory syndrome coronavirus open reading frame 3b protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19403678" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021