Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia.

Identifieur interne : 001913 ( PubMed/Corpus ); précédent : 001912; suivant : 001914

Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia.

Auteurs : Hong Peng Jia ; Dwight C. Look ; Ping Tan ; Lei Shi ; Melissa Hickey ; Lokesh Gakhar ; Mark C. Chappell ; Christine Wohlford-Lenane ; Paul B. Mccray

Source :

RBID : pubmed:19411314

English descriptors

Abstract

Angiotensin-converting enzyme 2 (ACE2) is a terminal carboxypeptidase and the receptor for the SARS and NL63 coronaviruses (CoV). Loss of ACE2 function is implicated in severe acute respiratory syndrome (SARS) pathogenesis, but little is known about ACE2 biogenesis and activity in the airways. We report that ACE2 is shed from human airway epithelia, a site of SARS-CoV infection. The regulation of ACE2 release was investigated in polarized human airway epithelia. Constitutive generation of soluble ACE2 was inhibited by DPC 333, implicating a disintegrin and metalloprotease 17 (ADAM17). Phorbol ester, ionomycin, endotoxin, and IL-1beta and TNFalpha acutely induced ACE2 release, further supporting that ADAM17 and ADAM10 regulate ACE2 cleavage. Soluble ACE2 was enzymatically active and partially inhibited virus entry into target cells. We determined that the ACE2 cleavage site resides between amino acid 716 and the putative transmembrane domain starting at amino acid 741. To reveal structural determinants underlying ACE2 release, several mutant and chimeric ACE2 proteins were engineered. Neither the juxtamembrane stalk region, transmembrane domain, nor the cytosolic domain was needed for constitutive ACE2 release. Interestingly, a point mutation in the ACE2 ectodomain, L584A, markedly attenuated shedding. The resultant ACE2-L584A mutant trafficked to the cell membrane and facilitated SARS-CoV entry into target cells, suggesting that the ACE2 ectodomain regulates its release and that residue L584 might be part of a putative sheddase "recognition motif." Thus ACE2 must be cell associated to serve as a CoV receptor and soluble ACE2 might play a role in modifying inflammatory processes at the airway mucosal surface.

DOI: 10.1152/ajplung.00071.2009
PubMed: 19411314

Links to Exploration step

pubmed:19411314

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia.</title>
<author>
<name sortKey="Jia, Hong Peng" sort="Jia, Hong Peng" uniqKey="Jia H" first="Hong Peng" last="Jia">Hong Peng Jia</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Look, Dwight C" sort="Look, Dwight C" uniqKey="Look D" first="Dwight C" last="Look">Dwight C. Look</name>
</author>
<author>
<name sortKey="Tan, Ping" sort="Tan, Ping" uniqKey="Tan P" first="Ping" last="Tan">Ping Tan</name>
</author>
<author>
<name sortKey="Shi, Lei" sort="Shi, Lei" uniqKey="Shi L" first="Lei" last="Shi">Lei Shi</name>
</author>
<author>
<name sortKey="Hickey, Melissa" sort="Hickey, Melissa" uniqKey="Hickey M" first="Melissa" last="Hickey">Melissa Hickey</name>
</author>
<author>
<name sortKey="Gakhar, Lokesh" sort="Gakhar, Lokesh" uniqKey="Gakhar L" first="Lokesh" last="Gakhar">Lokesh Gakhar</name>
</author>
<author>
<name sortKey="Chappell, Mark C" sort="Chappell, Mark C" uniqKey="Chappell M" first="Mark C" last="Chappell">Mark C. Chappell</name>
</author>
<author>
<name sortKey="Wohlford Lenane, Christine" sort="Wohlford Lenane, Christine" uniqKey="Wohlford Lenane C" first="Christine" last="Wohlford-Lenane">Christine Wohlford-Lenane</name>
</author>
<author>
<name sortKey="Mccray, Paul B" sort="Mccray, Paul B" uniqKey="Mccray P" first="Paul B" last="Mccray">Paul B. Mccray</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19411314</idno>
<idno type="pmid">19411314</idno>
<idno type="doi">10.1152/ajplung.00071.2009</idno>
<idno type="wicri:Area/PubMed/Corpus">001913</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001913</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia.</title>
<author>
<name sortKey="Jia, Hong Peng" sort="Jia, Hong Peng" uniqKey="Jia H" first="Hong Peng" last="Jia">Hong Peng Jia</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Look, Dwight C" sort="Look, Dwight C" uniqKey="Look D" first="Dwight C" last="Look">Dwight C. Look</name>
</author>
<author>
<name sortKey="Tan, Ping" sort="Tan, Ping" uniqKey="Tan P" first="Ping" last="Tan">Ping Tan</name>
</author>
<author>
<name sortKey="Shi, Lei" sort="Shi, Lei" uniqKey="Shi L" first="Lei" last="Shi">Lei Shi</name>
</author>
<author>
<name sortKey="Hickey, Melissa" sort="Hickey, Melissa" uniqKey="Hickey M" first="Melissa" last="Hickey">Melissa Hickey</name>
</author>
<author>
<name sortKey="Gakhar, Lokesh" sort="Gakhar, Lokesh" uniqKey="Gakhar L" first="Lokesh" last="Gakhar">Lokesh Gakhar</name>
</author>
<author>
<name sortKey="Chappell, Mark C" sort="Chappell, Mark C" uniqKey="Chappell M" first="Mark C" last="Chappell">Mark C. Chappell</name>
</author>
<author>
<name sortKey="Wohlford Lenane, Christine" sort="Wohlford Lenane, Christine" uniqKey="Wohlford Lenane C" first="Christine" last="Wohlford-Lenane">Christine Wohlford-Lenane</name>
</author>
<author>
<name sortKey="Mccray, Paul B" sort="Mccray, Paul B" uniqKey="Mccray P" first="Paul B" last="Mccray">Paul B. Mccray</name>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Lung cellular and molecular physiology</title>
<idno type="eISSN">1522-1504</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Line</term>
<term>Cell Membrane (metabolism)</term>
<term>Cell Polarity</term>
<term>Enzyme Activation</term>
<term>Epithelial Cells (cytology)</term>
<term>Epithelial Cells (enzymology)</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Mutant Proteins (metabolism)</term>
<term>Peptidyl-Dipeptidase A (chemistry)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Protein Structure, Tertiary</term>
<term>Respiratory System (cytology)</term>
<term>SARS Virus (physiology)</term>
<term>Severe Acute Respiratory Syndrome (enzymology)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Solubility</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mutant Proteins</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Epithelial Cells</term>
<term>Respiratory System</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Epithelial Cells</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Cell Polarity</term>
<term>Enzyme Activation</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Protein Structure, Tertiary</term>
<term>Solubility</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Angiotensin-converting enzyme 2 (ACE2) is a terminal carboxypeptidase and the receptor for the SARS and NL63 coronaviruses (CoV). Loss of ACE2 function is implicated in severe acute respiratory syndrome (SARS) pathogenesis, but little is known about ACE2 biogenesis and activity in the airways. We report that ACE2 is shed from human airway epithelia, a site of SARS-CoV infection. The regulation of ACE2 release was investigated in polarized human airway epithelia. Constitutive generation of soluble ACE2 was inhibited by DPC 333, implicating a disintegrin and metalloprotease 17 (ADAM17). Phorbol ester, ionomycin, endotoxin, and IL-1beta and TNFalpha acutely induced ACE2 release, further supporting that ADAM17 and ADAM10 regulate ACE2 cleavage. Soluble ACE2 was enzymatically active and partially inhibited virus entry into target cells. We determined that the ACE2 cleavage site resides between amino acid 716 and the putative transmembrane domain starting at amino acid 741. To reveal structural determinants underlying ACE2 release, several mutant and chimeric ACE2 proteins were engineered. Neither the juxtamembrane stalk region, transmembrane domain, nor the cytosolic domain was needed for constitutive ACE2 release. Interestingly, a point mutation in the ACE2 ectodomain, L584A, markedly attenuated shedding. The resultant ACE2-L584A mutant trafficked to the cell membrane and facilitated SARS-CoV entry into target cells, suggesting that the ACE2 ectodomain regulates its release and that residue L584 might be part of a putative sheddase "recognition motif." Thus ACE2 must be cell associated to serve as a CoV receptor and soluble ACE2 might play a role in modifying inflammatory processes at the airway mucosal surface.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19411314</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1504</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>297</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Lung cellular and molecular physiology</Title>
<ISOAbbreviation>Am. J. Physiol. Lung Cell Mol. Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia.</ArticleTitle>
<Pagination>
<MedlinePgn>L84-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajplung.00071.2009</ELocationID>
<Abstract>
<AbstractText>Angiotensin-converting enzyme 2 (ACE2) is a terminal carboxypeptidase and the receptor for the SARS and NL63 coronaviruses (CoV). Loss of ACE2 function is implicated in severe acute respiratory syndrome (SARS) pathogenesis, but little is known about ACE2 biogenesis and activity in the airways. We report that ACE2 is shed from human airway epithelia, a site of SARS-CoV infection. The regulation of ACE2 release was investigated in polarized human airway epithelia. Constitutive generation of soluble ACE2 was inhibited by DPC 333, implicating a disintegrin and metalloprotease 17 (ADAM17). Phorbol ester, ionomycin, endotoxin, and IL-1beta and TNFalpha acutely induced ACE2 release, further supporting that ADAM17 and ADAM10 regulate ACE2 cleavage. Soluble ACE2 was enzymatically active and partially inhibited virus entry into target cells. We determined that the ACE2 cleavage site resides between amino acid 716 and the putative transmembrane domain starting at amino acid 741. To reveal structural determinants underlying ACE2 release, several mutant and chimeric ACE2 proteins were engineered. Neither the juxtamembrane stalk region, transmembrane domain, nor the cytosolic domain was needed for constitutive ACE2 release. Interestingly, a point mutation in the ACE2 ectodomain, L584A, markedly attenuated shedding. The resultant ACE2-L584A mutant trafficked to the cell membrane and facilitated SARS-CoV entry into target cells, suggesting that the ACE2 ectodomain regulates its release and that residue L584 might be part of a putative sheddase "recognition motif." Thus ACE2 must be cell associated to serve as a CoV receptor and soluble ACE2 might play a role in modifying inflammatory processes at the airway mucosal surface.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jia</LastName>
<ForeName>Hong Peng</ForeName>
<Initials>HP</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Look</LastName>
<ForeName>Dwight C</ForeName>
<Initials>DC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Ping</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hickey</LastName>
<ForeName>Melissa</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gakhar</LastName>
<ForeName>Lokesh</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chappell</LastName>
<ForeName>Mark C</ForeName>
<Initials>MC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wohlford-Lenane</LastName>
<ForeName>Christine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McCray</LastName>
<ForeName>Paul B</ForeName>
<Initials>PB</Initials>
<Suffix>Jr</Suffix>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 DK-54759</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL051952</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL-051952</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01AI-060699</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI060699</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 DK054759</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>05</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Lung Cell Mol Physiol</MedlineTA>
<NlmUniqueID>100901229</NlmUniqueID>
<ISSNLinking>1040-0605</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050505">Mutant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016764" MajorTopicYN="N">Cell Polarity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050505" MajorTopicYN="N">Mutant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012137" MajorTopicYN="N">Respiratory System</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19411314</ArticleId>
<ArticleId IdType="pii">00071.2009</ArticleId>
<ArticleId IdType="doi">10.1152/ajplung.00071.2009</ArticleId>
<ArticleId IdType="pmc">PMC2711803</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1995-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1761-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2003 Sep;35(9):1043-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12967627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2003 Aug;34(8):743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14506633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 23;279(17):17996-8007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14754895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2004 Jun;271(12):2539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15182369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2004 Aug;287(2):L428-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15121639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Feb 22;251(4996):936-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1840698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Mar 8;64(5):1025-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1705866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Dec 24;71(7):1157-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1473151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1993 Dec 15;151(12):6882-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8258697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1994 May 15;152(10):4958-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8176214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jul 21;370(6486):218-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8028669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Aug 5;269(31):20060-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8051092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Aug 18;370(6490):555-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8052310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Aug 18;370(6490):558-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8052311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Sep;5(9):943-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7531036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 May 11;375(6527):146-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7753170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1995 Aug 1;182(2):519-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7543141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1997 Jan 15;321 ( Pt 2):265-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9020855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Gene Ther. 1997 Jun 10;8(9):1087-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9189766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):138-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9419342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Surg Res. 1997 Dec;73(2):107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9441802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 1998 Aug;64(2):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9715251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Nov 13;282(5392):1281-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9812885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1999 Mar 1;162(5):2931-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Clin Lab Sci. 1999 Jun;36(3):165-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10407682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comb Chem High Throughput Screen. 2005 Mar;8(2):161-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15777180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1999 Dec;104(11):R55-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10587528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 May 1;347 Pt 3:711-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Apr 20;24(8):1634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jul 7;436(7047):112-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16001071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2005 Jul;30(7):413-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15949939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Aug 1;175(3):1930-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16034137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Aug;11(8):875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comb Chem High Throughput Screen. 2005 Jun;8(4):327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 26;280(34):30113-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(23):14614-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15511-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2006 Jul;80(1):26-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16799153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:479-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Jan;18(1):176-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Renal Physiol. 2007 Jan;292(1):F82-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 2007 Jun;127(6):1444-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17363916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Jun 15;178(12):8064-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17548644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 2007 Oct;35(10):1916-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17656469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Jan 23;582(2):385-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18070603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7809-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18490652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 May 12;275(19):14598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10799546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2000 Jun;7(12):1034-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10871752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2000 Sep 1;87(5):E1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10969042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Oct 27;275(43):33238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2001 Jan 1;97(1):183-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11133759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Apr 26;277(17):14838-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11815627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2002;188:115-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11987537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2002 Oct;72(4):711-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12377940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Dec 4;532(1-2):107-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12459472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 20;422(6929):322-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12646923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 6;278(23):20555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663667</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001913 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001913 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19411314
   |texte=   Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19411314" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021