Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage.

Identifieur interne : 001796 ( PubMed/Corpus ); précédent : 001795; suivant : 001797

Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage.

Auteurs : Gergely Tekes ; Regina Hofmann-Lehmann ; Barbara Bank-Wolf ; Reinhard Maier ; Heinz-Jürgen Thiel ; Volker Thiel

Source :

RBID : pubmed:19906918

English descriptors

Abstract

Persistent infection of domestic cats with feline coronaviruses (FCoVs) can lead to a highly lethal, immunopathological disease termed feline infectious peritonitis (FIP). Interestingly, there are two serotypes, type I and type II FCoVs, that can cause both persistent infection and FIP, even though their main determinant of host cell tropism, the spike (S) protein, is of different phylogeny and displays limited sequence identity. In cell culture, however, there are apparent differences. Type II FCoVs can be propagated to high titers by employing feline aminopeptidase N (fAPN) as a cellular receptor, whereas the propagation of type I FCoVs is usually difficult, and the involvement of fAPN as a receptor is controversial. In this study we have analyzed the phenotypes of recombinant FCoVs that are based on the genetic background of type I FCoV strain Black but encode the type II FCoV strain 79-1146 S protein. Our data demonstrate that recombinant FCoVs expressing a type II FCoV S protein acquire the ability to efficiently use fAPN for host cell entry and corroborate the notion that type I FCoVs use another main host cell receptor. We also observed that recombinant FCoVs display a large-plaque phenotype and, unexpectedly, accelerated growth kinetics indistinguishable from that of type II FCoV strain 79-1146. Thus, the main phenotypic differences for type I and type II FCoVs in cell culture, namely, the growth kinetics and the efficient usage of fAPN as a cellular receptor, can be attributed solely to the FCoV S protein.

DOI: 10.1128/JVI.01568-09
PubMed: 19906918

Links to Exploration step

pubmed:19906918

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage.</title>
<author>
<name sortKey="Tekes, Gergely" sort="Tekes, Gergely" uniqKey="Tekes G" first="Gergely" last="Tekes">Gergely Tekes</name>
<affiliation>
<nlm:affiliation>Institut für Virologie, Justus Liebig Universität Giessen, Giessen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hofmann Lehmann, Regina" sort="Hofmann Lehmann, Regina" uniqKey="Hofmann Lehmann R" first="Regina" last="Hofmann-Lehmann">Regina Hofmann-Lehmann</name>
</author>
<author>
<name sortKey="Bank Wolf, Barbara" sort="Bank Wolf, Barbara" uniqKey="Bank Wolf B" first="Barbara" last="Bank-Wolf">Barbara Bank-Wolf</name>
</author>
<author>
<name sortKey="Maier, Reinhard" sort="Maier, Reinhard" uniqKey="Maier R" first="Reinhard" last="Maier">Reinhard Maier</name>
</author>
<author>
<name sortKey="Thiel, Heinz Jurgen" sort="Thiel, Heinz Jurgen" uniqKey="Thiel H" first="Heinz-Jürgen" last="Thiel">Heinz-Jürgen Thiel</name>
</author>
<author>
<name sortKey="Thiel, Volker" sort="Thiel, Volker" uniqKey="Thiel V" first="Volker" last="Thiel">Volker Thiel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19906918</idno>
<idno type="pmid">19906918</idno>
<idno type="doi">10.1128/JVI.01568-09</idno>
<idno type="wicri:Area/PubMed/Corpus">001796</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001796</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage.</title>
<author>
<name sortKey="Tekes, Gergely" sort="Tekes, Gergely" uniqKey="Tekes G" first="Gergely" last="Tekes">Gergely Tekes</name>
<affiliation>
<nlm:affiliation>Institut für Virologie, Justus Liebig Universität Giessen, Giessen, Germany.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hofmann Lehmann, Regina" sort="Hofmann Lehmann, Regina" uniqKey="Hofmann Lehmann R" first="Regina" last="Hofmann-Lehmann">Regina Hofmann-Lehmann</name>
</author>
<author>
<name sortKey="Bank Wolf, Barbara" sort="Bank Wolf, Barbara" uniqKey="Bank Wolf B" first="Barbara" last="Bank-Wolf">Barbara Bank-Wolf</name>
</author>
<author>
<name sortKey="Maier, Reinhard" sort="Maier, Reinhard" uniqKey="Maier R" first="Reinhard" last="Maier">Reinhard Maier</name>
</author>
<author>
<name sortKey="Thiel, Heinz Jurgen" sort="Thiel, Heinz Jurgen" uniqKey="Thiel H" first="Heinz-Jürgen" last="Thiel">Heinz-Jürgen Thiel</name>
</author>
<author>
<name sortKey="Thiel, Volker" sort="Thiel, Volker" uniqKey="Thiel V" first="Volker" last="Thiel">Volker Thiel</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cats</term>
<term>Cell Line</term>
<term>Chimerism</term>
<term>Coronavirus, Feline (genetics)</term>
<term>Coronavirus, Feline (growth & development)</term>
<term>Coronavirus, Feline (physiology)</term>
<term>Cricetinae</term>
<term>Flow Cytometry</term>
<term>Genes, Viral</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Receptors, Virus (physiology)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus, Feline</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Coronavirus, Feline</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coronavirus, Feline</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cats</term>
<term>Cell Line</term>
<term>Chimerism</term>
<term>Cricetinae</term>
<term>Flow Cytometry</term>
<term>Genes, Viral</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Persistent infection of domestic cats with feline coronaviruses (FCoVs) can lead to a highly lethal, immunopathological disease termed feline infectious peritonitis (FIP). Interestingly, there are two serotypes, type I and type II FCoVs, that can cause both persistent infection and FIP, even though their main determinant of host cell tropism, the spike (S) protein, is of different phylogeny and displays limited sequence identity. In cell culture, however, there are apparent differences. Type II FCoVs can be propagated to high titers by employing feline aminopeptidase N (fAPN) as a cellular receptor, whereas the propagation of type I FCoVs is usually difficult, and the involvement of fAPN as a receptor is controversial. In this study we have analyzed the phenotypes of recombinant FCoVs that are based on the genetic background of type I FCoV strain Black but encode the type II FCoV strain 79-1146 S protein. Our data demonstrate that recombinant FCoVs expressing a type II FCoV S protein acquire the ability to efficiently use fAPN for host cell entry and corroborate the notion that type I FCoVs use another main host cell receptor. We also observed that recombinant FCoVs display a large-plaque phenotype and, unexpectedly, accelerated growth kinetics indistinguishable from that of type II FCoV strain 79-1146. Thus, the main phenotypic differences for type I and type II FCoVs in cell culture, namely, the growth kinetics and the efficient usage of fAPN as a cellular receptor, can be attributed solely to the FCoV S protein.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19906918</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>84</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage.</ArticleTitle>
<Pagination>
<MedlinePgn>1326-33</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01568-09</ELocationID>
<Abstract>
<AbstractText>Persistent infection of domestic cats with feline coronaviruses (FCoVs) can lead to a highly lethal, immunopathological disease termed feline infectious peritonitis (FIP). Interestingly, there are two serotypes, type I and type II FCoVs, that can cause both persistent infection and FIP, even though their main determinant of host cell tropism, the spike (S) protein, is of different phylogeny and displays limited sequence identity. In cell culture, however, there are apparent differences. Type II FCoVs can be propagated to high titers by employing feline aminopeptidase N (fAPN) as a cellular receptor, whereas the propagation of type I FCoVs is usually difficult, and the involvement of fAPN as a receptor is controversial. In this study we have analyzed the phenotypes of recombinant FCoVs that are based on the genetic background of type I FCoV strain Black but encode the type II FCoV strain 79-1146 S protein. Our data demonstrate that recombinant FCoVs expressing a type II FCoV S protein acquire the ability to efficiently use fAPN for host cell entry and corroborate the notion that type I FCoVs use another main host cell receptor. We also observed that recombinant FCoVs display a large-plaque phenotype and, unexpectedly, accelerated growth kinetics indistinguishable from that of type II FCoV strain 79-1146. Thus, the main phenotypic differences for type I and type II FCoVs in cell culture, namely, the growth kinetics and the efficient usage of fAPN as a cellular receptor, can be attributed solely to the FCoV S protein.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tekes</LastName>
<ForeName>Gergely</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Institut für Virologie, Justus Liebig Universität Giessen, Giessen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hofmann-Lehmann</LastName>
<ForeName>Regina</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bank-Wolf</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maier</LastName>
<ForeName>Reinhard</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thiel</LastName>
<ForeName>Heinz-Jürgen</ForeName>
<Initials>HJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thiel</LastName>
<ForeName>Volker</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>11</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002415" MajorTopicYN="N">Cats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046528" MajorTopicYN="Y">Chimerism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016765" MajorTopicYN="N">Coronavirus, Feline</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005814" MajorTopicYN="N">Genes, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19906918</ArticleId>
<ArticleId IdType="pii">JVI.01568-09</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01568-09</ArticleId>
<ArticleId IdType="pmc">PMC2812337</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2004 Jun;85(Pt 6):1717-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15166457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Immunol Immunopathol. 1989 Jul;21(3-4):293-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2552650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1996 Dec;34(12):3180-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8940468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Dec;70(12):8669-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 May;72(5):4508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9557750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1998;143(5):839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9645192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 1999 Sep 1;69(1-2):131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10515283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):1036-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Diagn Lab Immunol. 2005 Oct;12(10):1209-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16210485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(22):14122-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2005 Dec;150(12):2483-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16052283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2005 Dec;5(12):917-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Oct;75(20):9741-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11559807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Immunol Immunopathol. 2006 Aug 15;112(3-4):141-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16621029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(3):1261-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17093189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2007 Feb 1;109(3):1131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2007 Jun;88(Pt 6):1753-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Jul 20;364(1):64-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17382365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(4):1851-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2008 Apr;19(2):121-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Oct;82(20):10312-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18667517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2008 Dec 10;132(3-4):221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11992-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18799586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Dec;82(24):12325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18922871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;454:237-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19057873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Feb 5;384(1):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19058829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2009;154(5):775-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1989 Jan;63(1):436-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2521188</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001796 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001796 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:19906918
   |texte=   Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:19906918" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021