Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology.

Identifieur interne : 001746 ( PubMed/Corpus ); précédent : 001745; suivant : 001747

Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology.

Auteurs : Jody D. Berry ; Kevin Hay ; James M. Rini ; Meng Yu ; Linfa Wang ; Francis A. Plummer ; Cindi R. Corbett ; Anton Andonov

Source :

RBID : pubmed:20168090

English descriptors

Abstract

Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro. Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TO R2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.

DOI: 10.4161/mabs.2.1.10788
PubMed: 20168090

Links to Exploration step

pubmed:20168090

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology.</title>
<author>
<name sortKey="Berry, Jody D" sort="Berry, Jody D" uniqKey="Berry J" first="Jody D" last="Berry">Jody D. Berry</name>
<affiliation>
<nlm:affiliation>Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada. jberry@cangene.com</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hay, Kevin" sort="Hay, Kevin" uniqKey="Hay K" first="Kevin" last="Hay">Kevin Hay</name>
</author>
<author>
<name sortKey="Rini, James M" sort="Rini, James M" uniqKey="Rini J" first="James M" last="Rini">James M. Rini</name>
</author>
<author>
<name sortKey="Yu, Meng" sort="Yu, Meng" uniqKey="Yu M" first="Meng" last="Yu">Meng Yu</name>
</author>
<author>
<name sortKey="Wang, Linfa" sort="Wang, Linfa" uniqKey="Wang L" first="Linfa" last="Wang">Linfa Wang</name>
</author>
<author>
<name sortKey="Plummer, Francis A" sort="Plummer, Francis A" uniqKey="Plummer F" first="Francis A" last="Plummer">Francis A. Plummer</name>
</author>
<author>
<name sortKey="Corbett, Cindi R" sort="Corbett, Cindi R" uniqKey="Corbett C" first="Cindi R" last="Corbett">Cindi R. Corbett</name>
</author>
<author>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="????">
<PubDate>
<MedlineDate>2010 Jan-Feb</MedlineDate>
</PubDate>
</date>
<idno type="RBID">pubmed:20168090</idno>
<idno type="pmid">20168090</idno>
<idno type="doi">10.4161/mabs.2.1.10788</idno>
<idno type="wicri:Area/PubMed/Corpus">001746</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001746</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology.</title>
<author>
<name sortKey="Berry, Jody D" sort="Berry, Jody D" uniqKey="Berry J" first="Jody D" last="Berry">Jody D. Berry</name>
<affiliation>
<nlm:affiliation>Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada. jberry@cangene.com</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hay, Kevin" sort="Hay, Kevin" uniqKey="Hay K" first="Kevin" last="Hay">Kevin Hay</name>
</author>
<author>
<name sortKey="Rini, James M" sort="Rini, James M" uniqKey="Rini J" first="James M" last="Rini">James M. Rini</name>
</author>
<author>
<name sortKey="Yu, Meng" sort="Yu, Meng" uniqKey="Yu M" first="Meng" last="Yu">Meng Yu</name>
</author>
<author>
<name sortKey="Wang, Linfa" sort="Wang, Linfa" uniqKey="Wang L" first="Linfa" last="Wang">Linfa Wang</name>
</author>
<author>
<name sortKey="Plummer, Francis A" sort="Plummer, Francis A" uniqKey="Plummer F" first="Francis A" last="Plummer">Francis A. Plummer</name>
</author>
<author>
<name sortKey="Corbett, Cindi R" sort="Corbett, Cindi R" uniqKey="Corbett C" first="Cindi R" last="Corbett">Cindi R. Corbett</name>
</author>
<author>
<name sortKey="Andonov, Anton" sort="Andonov, Anton" uniqKey="Andonov A" first="Anton" last="Andonov">Anton Andonov</name>
</author>
</analytic>
<series>
<title level="j">mAbs</title>
<idno type="eISSN">1942-0870</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antibodies, Monoclonal (chemistry)</term>
<term>Antibodies, Monoclonal (genetics)</term>
<term>Antibodies, Monoclonal (immunology)</term>
<term>Antibodies, Monoclonal (metabolism)</term>
<term>Antibodies, Neutralizing (chemistry)</term>
<term>Antibodies, Neutralizing (genetics)</term>
<term>Antibodies, Neutralizing (immunology)</term>
<term>Antibodies, Neutralizing (metabolism)</term>
<term>Antibody Affinity</term>
<term>Biomedical Technology</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Epitope Mapping</term>
<term>Humans</term>
<term>Immunodominant Epitopes (immunology)</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (immunology)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mice</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Receptor, Angiotensin, Type 2 (metabolism)</term>
<term>Receptors, Antigen, B-Cell (immunology)</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (immunology)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>SARS Virus (immunology)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (prevention & control)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (immunology)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Antibodies, Neutralizing</term>
<term>Membrane Glycoproteins</term>
<term>Recombinant Fusion Proteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Antibodies, Neutralizing</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Antibodies, Neutralizing</term>
<term>Immunodominant Epitopes</term>
<term>Membrane Glycoproteins</term>
<term>Receptors, Antigen, B-Cell</term>
<term>Recombinant Fusion Proteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Antibodies, Neutralizing</term>
<term>Membrane Glycoproteins</term>
<term>Receptor, Angiotensin, Type 2</term>
<term>Recombinant Fusion Proteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Antibody Affinity</term>
<term>Biomedical Technology</term>
<term>Enzyme-Linked Immunosorbent Assay</term>
<term>Epitope Mapping</term>
<term>Humans</term>
<term>Mice</term>
<term>Protein Binding</term>
<term>Protein Conformation</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Vaccines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro. Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TO R2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20168090</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1942-0870</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<Issue>1</Issue>
<PubDate>
<MedlineDate>2010 Jan-Feb</MedlineDate>
</PubDate>
</JournalIssue>
<Title>mAbs</Title>
<ISOAbbreviation>MAbs</ISOAbbreviation>
</Journal>
<ArticleTitle>Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology.</ArticleTitle>
<Pagination>
<MedlinePgn>53-66</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Neutralizing antibody responses to the surface glycoproteins of enveloped viruses play an important role in immunity. Many of these glycoproteins, including the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike (S) protein form trimeric units in the membrane of the native virion. There is substantial experimental and pre-clinical evidence showing that the S protein is a promising lead for vaccines and therapeutics. Previously we generated a panel of monoclonal antibodies (mAbs) to whole inactivated SARS-CoV which neutralize the virus in vitro. Here, we define their specificity and affinity, map several of their epitopes and lastly characterise chimeric versions of them. Our data show that the neutralizing mAbs bind to the angiotensin-converting enzyme 2 (ACE2) receptor-binding domain (RBD) of the SARS S protein. Three of the chimeric mAbs retain their binding specificity while one conformational mAb, F26G19, lost its ability to bind the S protein despite high level expression. The affinity for recombinant S is maintained in all of the functional chimeric versions of the parental mAbs. Both parental mAb F26G18 and the chimeric version neutralize the TO R2 strain of SARS-CoV with essentially identical titres (2.07 and 2.47 nM, respectively). Lastly, a comparison with other neutralizing mAbs to SARS-CoV clearly shows that the dominance of a 33 amino acid residue loop of the SARS-CoV RBD is independent of repertoire, species, quaternary structure, and importantly, the technology used to derive the mAbs. In cases like this, the dominance of a compact RBD antigenic domain and the central role of the S protein in pathogenesis may inherently create immunoselection pressure on viruses to evolve more complex evasion strategies or die out of a host species. The apparent simplicity of the mechanism of SARS-CoV neutralization is in stark contrast to the complexity shown by other enveloped viruses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Berry</LastName>
<ForeName>Jody D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada. jberry@cangene.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hay</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rini</LastName>
<ForeName>James M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Meng</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Linfa</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Plummer</LastName>
<ForeName>Francis A</ForeName>
<Initials>FA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Corbett</LastName>
<ForeName>Cindi R</ForeName>
<Initials>CR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Andonov</LastName>
<ForeName>Anton</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>01</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>MAbs</MedlineTA>
<NlmUniqueID>101479829</NlmUniqueID>
<ISSNLinking>1942-0862</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000911">Antibodies, Monoclonal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D057134">Antibodies, Neutralizing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016056">Immunodominant Epitopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D044139">Receptor, Angiotensin, Type 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011947">Receptors, Antigen, B-Cell</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000911" MajorTopicYN="N">Antibodies, Monoclonal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057134" MajorTopicYN="N">Antibodies, Neutralizing</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000915" MajorTopicYN="N">Antibody Affinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020811" MajorTopicYN="N">Biomedical Technology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004797" MajorTopicYN="N">Enzyme-Linked Immunosorbent Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018604" MajorTopicYN="N">Epitope Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016056" MajorTopicYN="N">Immunodominant Epitopes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044139" MajorTopicYN="N">Receptor, Angiotensin, Type 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011947" MajorTopicYN="N">Receptors, Antigen, B-Cell</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="Y">Viral Vaccines</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>6</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20168090</ArticleId>
<ArticleId IdType="pii">10788</ArticleId>
<ArticleId IdType="pmc">PMC2828578</ArticleId>
<ArticleId IdType="doi">10.4161/mabs.2.1.10788</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2004 Feb;18(2):361-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14688205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Immunol Immunopathol. 2004 Apr;98(3-4):127-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2004 Mar 20;363(9413):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 1;428(6982):561-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2004 Apr;42(4):1570-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(13):7217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2004 Sep 1;120(1):87-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15234813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Aug;10(8):871-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Nov 12;324(2):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2005 Jan;42(1):125-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15488951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7843-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8755564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Dec;70(12):9046-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8971041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 1997 Apr;3(4):366-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9095159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 1997 Jul;15(10):1149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9269061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 1997 Jul;19(1):71-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9281855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Dec 10;325(2):445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15530413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Immunol. 2005 Feb;42(3):335-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15589322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2004 Nov;294(1-2):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1635-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 Feb 15;191(4):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15655773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Apr 10;334(2):160-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15780866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viral Immunol. 2005;18(1):244-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15802970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Mar;3(3):e91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15760272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Apr 15;174(8):4908-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(10):5900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15857975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2005 Sep;128(1-2):21-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15885812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2005 Jun;4(3):429-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16026254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet J. 2005 Sep;170(2):193-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16129340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Oct;79(19):12148-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16160142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005;2:73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16122388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2006 Jan;78(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anti Infect Ther. 2006 Feb;4(1):57-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Mar;87(Pt 3):641-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16476986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 9;281(23):15829-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Immunol Med Microbiol. 2006 Aug;47(3):436-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16872381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Aug;13(8):751-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Sep 15;353(1):6-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16793110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Nov;80(21):10315-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 10;281(45):34610-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16954221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Sep;3(9):e343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jan 2;25(1):136-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2007 Jan 10;318(1-2):75-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17140598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Apr 12;25(15):2832-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17092615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 May 22;25(21):4283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17403562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17620608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(10):e1082</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17957264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2007 Dec 1;328(1-2):128-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17936779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2007;8:361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17897458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2008 Feb;29(2):91-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2008 Feb 29;331(1-2):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jul;82(13):6200-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jul 10;454(7201):177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18615077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2008 Oct 3;26(42):5393-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18706956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008;4(10):e1000171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18833294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Nov;4(11):e1000197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18989460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Feb;83(4):1649-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):372-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Mar;71(6):1333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 May 15;388(4):815-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19324051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(9):e6948</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19774228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Nov 10;394(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Nov 5;27(47):6589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19716456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Dec 11;394(4):600-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19853613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Dec 20;395(2):280-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19833372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 1999;13 Suppl A:S137-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10885772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2001 Feb 8;19(13-14):1732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11166898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6913-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Dec 12;420(6916):678-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12478295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 May;77(10):5889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2003 Sep;11(9):438-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2003 Nov;9(11):468-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14604823</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001746 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001746 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20168090
   |texte=   Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20168090" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021