Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication.

Identifieur interne : 001717 ( PubMed/Corpus ); précédent : 001716; suivant : 001718

Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication.

Auteurs : Liang Zhang ; Zhi-Ping Zhang ; Xian-En Zhang ; Fu-Sen Lin ; Feng Ge

Source :

RBID : pubmed:20392858

English descriptors

Abstract

The discovery of a novel coronavirus (CoV) as the causative agent of severe acute respiratory syndrome (SARS) has highlighted the need for a better understanding of CoV replication. The replication of SARS-CoV is highly dependent on host cell factors. However, relatively little is known about the cellular proteome changes that occur during SARS-CoV replication. Recently, we developed a cell line expressing a SARS-CoV subgenomic replicon and used it to screen inhibitors of SARS-CoV replication. To identify host proteins important for SARS-CoV RNA replication, the protein profiles of the SARS-CoV replicon cells and parental BHK21 cells were compared using a quantitative proteomic strategy termed "stable-isotope labeling by amino acids in cell culture-mass spectrometry" (SILAC-MS). Our results revealed that, among the 1,081 host proteins quantified in both forward and reverse SILAC measurements, 74 had significantly altered levels of expression. Of these, significantly upregulated BCL2-associated athanogene 3 (BAG3) was selected for further functional studies. BAG3 is involved in a wide variety of cellular processes, including cell survival, cellular stress response, proliferation, migration, and apoptosis. Our results show that inhibition of BAG3 expression by RNA interference led to significant suppression of SARS-CoV replication, suggesting the possibility that upregulation of BAG3 may be part of the machinery that SARS-CoV relies on for replication. By correlating the proteomic data with these functional studies, the findings of this study provide important information for understanding SARS-CoV replication.

DOI: 10.1128/JVI.00213-10
PubMed: 20392858

Links to Exploration step

pubmed:20392858

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication.</title>
<author>
<name sortKey="Zhang, Liang" sort="Zhang, Liang" uniqKey="Zhang L" first="Liang" last="Zhang">Liang Zhang</name>
<affiliation>
<nlm:affiliation>Division of Research, Singapore Health Research Facilities, 7 Hospital Drive, Singapore 169611, Republic of Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhi Ping" sort="Zhang, Zhi Ping" uniqKey="Zhang Z" first="Zhi-Ping" last="Zhang">Zhi-Ping Zhang</name>
</author>
<author>
<name sortKey="Zhang, Xian En" sort="Zhang, Xian En" uniqKey="Zhang X" first="Xian-En" last="Zhang">Xian-En Zhang</name>
</author>
<author>
<name sortKey="Lin, Fu Sen" sort="Lin, Fu Sen" uniqKey="Lin F" first="Fu-Sen" last="Lin">Fu-Sen Lin</name>
</author>
<author>
<name sortKey="Ge, Feng" sort="Ge, Feng" uniqKey="Ge F" first="Feng" last="Ge">Feng Ge</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20392858</idno>
<idno type="pmid">20392858</idno>
<idno type="doi">10.1128/JVI.00213-10</idno>
<idno type="wicri:Area/PubMed/Corpus">001717</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001717</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication.</title>
<author>
<name sortKey="Zhang, Liang" sort="Zhang, Liang" uniqKey="Zhang L" first="Liang" last="Zhang">Liang Zhang</name>
<affiliation>
<nlm:affiliation>Division of Research, Singapore Health Research Facilities, 7 Hospital Drive, Singapore 169611, Republic of Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Zhi Ping" sort="Zhang, Zhi Ping" uniqKey="Zhang Z" first="Zhi-Ping" last="Zhang">Zhi-Ping Zhang</name>
</author>
<author>
<name sortKey="Zhang, Xian En" sort="Zhang, Xian En" uniqKey="Zhang X" first="Xian-En" last="Zhang">Xian-En Zhang</name>
</author>
<author>
<name sortKey="Lin, Fu Sen" sort="Lin, Fu Sen" uniqKey="Lin F" first="Fu-Sen" last="Lin">Fu-Sen Lin</name>
</author>
<author>
<name sortKey="Ge, Feng" sort="Ge, Feng" uniqKey="Ge F" first="Feng" last="Ge">Feng Ge</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (genetics)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Cricetinae</term>
<term>Humans</term>
<term>Proteomics</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (physiology)</term>
<term>Severe Acute Respiratory Syndrome (genetics)</term>
<term>Severe Acute Respiratory Syndrome (metabolism)</term>
<term>Severe Acute Respiratory Syndrome (virology)</term>
<term>Vero Cells</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chlorocebus aethiops</term>
<term>Cricetinae</term>
<term>Humans</term>
<term>Proteomics</term>
<term>Vero Cells</term>
<term>Virus Replication</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The discovery of a novel coronavirus (CoV) as the causative agent of severe acute respiratory syndrome (SARS) has highlighted the need for a better understanding of CoV replication. The replication of SARS-CoV is highly dependent on host cell factors. However, relatively little is known about the cellular proteome changes that occur during SARS-CoV replication. Recently, we developed a cell line expressing a SARS-CoV subgenomic replicon and used it to screen inhibitors of SARS-CoV replication. To identify host proteins important for SARS-CoV RNA replication, the protein profiles of the SARS-CoV replicon cells and parental BHK21 cells were compared using a quantitative proteomic strategy termed "stable-isotope labeling by amino acids in cell culture-mass spectrometry" (SILAC-MS). Our results revealed that, among the 1,081 host proteins quantified in both forward and reverse SILAC measurements, 74 had significantly altered levels of expression. Of these, significantly upregulated BCL2-associated athanogene 3 (BAG3) was selected for further functional studies. BAG3 is involved in a wide variety of cellular processes, including cell survival, cellular stress response, proliferation, migration, and apoptosis. Our results show that inhibition of BAG3 expression by RNA interference led to significant suppression of SARS-CoV replication, suggesting the possibility that upregulation of BAG3 may be part of the machinery that SARS-CoV relies on for replication. By correlating the proteomic data with these functional studies, the findings of this study provide important information for understanding SARS-CoV replication.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20392858</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>84</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication.</ArticleTitle>
<Pagination>
<MedlinePgn>6050-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00213-10</ELocationID>
<Abstract>
<AbstractText>The discovery of a novel coronavirus (CoV) as the causative agent of severe acute respiratory syndrome (SARS) has highlighted the need for a better understanding of CoV replication. The replication of SARS-CoV is highly dependent on host cell factors. However, relatively little is known about the cellular proteome changes that occur during SARS-CoV replication. Recently, we developed a cell line expressing a SARS-CoV subgenomic replicon and used it to screen inhibitors of SARS-CoV replication. To identify host proteins important for SARS-CoV RNA replication, the protein profiles of the SARS-CoV replicon cells and parental BHK21 cells were compared using a quantitative proteomic strategy termed "stable-isotope labeling by amino acids in cell culture-mass spectrometry" (SILAC-MS). Our results revealed that, among the 1,081 host proteins quantified in both forward and reverse SILAC measurements, 74 had significantly altered levels of expression. Of these, significantly upregulated BCL2-associated athanogene 3 (BAG3) was selected for further functional studies. BAG3 is involved in a wide variety of cellular processes, including cell survival, cellular stress response, proliferation, migration, and apoptosis. Our results show that inhibition of BAG3 expression by RNA interference led to significant suppression of SARS-CoV replication, suggesting the possibility that upregulation of BAG3 may be part of the machinery that SARS-CoV relies on for replication. By correlating the proteomic data with these functional studies, the findings of this study provide important information for understanding SARS-CoV replication.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Liang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Division of Research, Singapore Health Research Facilities, 7 Hospital Drive, Singapore 169611, Republic of Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhi-Ping</ForeName>
<Initials>ZP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xian-En</ForeName>
<Initials>XE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Fu-Sen</ForeName>
<Initials>FS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ge</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>04</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="Y">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20392858</ArticleId>
<ArticleId IdType="pii">JVI.00213-10</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00213-10</ArticleId>
<ArticleId IdType="pmc">PMC2876644</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Jun 3;308(5727):1472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15933201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 2005;67:285-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15949538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jun 30;1741(1-2):4-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15916886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Jul;4(7):902-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15784933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Mar 6;580(6):1531-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16494877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2007;39(7-8):1337-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17493862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Nov-Dec;3(6):581-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17700057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Proteomics. 2007 Dec;4(6):815-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18067418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jan 18;283(3):1437-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2008 Apr;89(Pt 4):866-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18343826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Apr;5(4):319-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18345006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2008 May;65(9):1390-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18264803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Sep;7(9):3847-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18646787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2008 Nov;80(2):107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18584889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 2009 Feb;218(2):264-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18821563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2008 Dec;8(23-24):5108-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19016532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20912-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19088197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Feb 27;284(9):5523-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Apr 8;28(7):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19229298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2009 Jul;90(Pt 7):1629-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19282432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2009;335:1-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2009;335:267-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2009;335:323-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Gastroenterol. 2009 Nov;25(6):512-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19826372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2009 Nov;19(6):359-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19750559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2006 Jun;16(3):162-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16678438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Aug 18;347(1):261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16808902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2006 Sep 10;312(15):2962-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16859681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 6;281(40):30269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16895903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2000;40:617-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10836149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Jul;75(14):6402-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2002 May;1(5):376-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12118079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Sep;76(17):8560-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12163576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2002 Dec 15;188(1-2):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12406544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Aug;77(15):8181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Aug 1;278(31):28490-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Dec 2;13(23):2037-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14653992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15764-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2004 Feb;18(2):358-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14628070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Feb;24(4):1779-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10136-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2004 May 15;38(10):1420-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15156481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Jul;4(7):1985-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2004 May-Jun;3(3):549-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15253436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9977-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:85-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Oct;6(20):5628-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16991198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2006 Dec;5(4):261-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16772273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D247-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17130144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Mar 30;360(1):150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2007 Apr 1;120(Pt 7):1149-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17376960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2007 Jun;71(2):398-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17554050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2007 Apr-Jun;27(2):63-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17578703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jul;81(14):7491-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17475647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Nov;16(11):1134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19838190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2010 Jan;12(1):10-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2010 Mar 5;9(3):1549-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20070120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):13600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Sep;22(9):1139-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Aug;7(4):412-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Jul 5;246(2):288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Dev Biol. 2005;65:211-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2005 Feb;7(2):248-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15777647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(10):6180-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15858003</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001717 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001717 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20392858
   |texte=   Quantitative proteomics analysis reveals BAG3 as a potential target to suppress severe acute respiratory syndrome coronavirus replication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20392858" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021