Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vitro reconstitution of SARS-coronavirus mRNA cap methylation.

Identifieur interne : 001705 ( PubMed/Corpus ); précédent : 001704; suivant : 001706

In vitro reconstitution of SARS-coronavirus mRNA cap methylation.

Auteurs : Mickaël Bouvet ; Claire Debarnot ; Isabelle Imbert ; Barbara Selisko ; Eric J. Snijder ; Bruno Canard ; Etienne Decroly

Source :

RBID : pubmed:20421945

English descriptors

Abstract

SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5' end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2'O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 (7Me)GpppA-RNAs. The latter are then selectively 2'O-methylated by the 2'O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 (7Me)GpppA(2'OMe)-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC(50) values in the micromolar range, providing a validated basis for anti-coronavirus drug design.

DOI: 10.1371/journal.ppat.1000863
PubMed: 20421945

Links to Exploration step

pubmed:20421945

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vitro reconstitution of SARS-coronavirus mRNA cap methylation.</title>
<author>
<name sortKey="Bouvet, Mickael" sort="Bouvet, Mickael" uniqKey="Bouvet M" first="Mickaël" last="Bouvet">Mickaël Bouvet</name>
<affiliation>
<nlm:affiliation>Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, Marseille, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Debarnot, Claire" sort="Debarnot, Claire" uniqKey="Debarnot C" first="Claire" last="Debarnot">Claire Debarnot</name>
</author>
<author>
<name sortKey="Imbert, Isabelle" sort="Imbert, Isabelle" uniqKey="Imbert I" first="Isabelle" last="Imbert">Isabelle Imbert</name>
</author>
<author>
<name sortKey="Selisko, Barbara" sort="Selisko, Barbara" uniqKey="Selisko B" first="Barbara" last="Selisko">Barbara Selisko</name>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
</author>
<author>
<name sortKey="Canard, Bruno" sort="Canard, Bruno" uniqKey="Canard B" first="Bruno" last="Canard">Bruno Canard</name>
</author>
<author>
<name sortKey="Decroly, Etienne" sort="Decroly, Etienne" uniqKey="Decroly E" first="Etienne" last="Decroly">Etienne Decroly</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20421945</idno>
<idno type="pmid">20421945</idno>
<idno type="doi">10.1371/journal.ppat.1000863</idno>
<idno type="wicri:Area/PubMed/Corpus">001705</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001705</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In vitro reconstitution of SARS-coronavirus mRNA cap methylation.</title>
<author>
<name sortKey="Bouvet, Mickael" sort="Bouvet, Mickael" uniqKey="Bouvet M" first="Mickaël" last="Bouvet">Mickaël Bouvet</name>
<affiliation>
<nlm:affiliation>Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, Marseille, France.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Debarnot, Claire" sort="Debarnot, Claire" uniqKey="Debarnot C" first="Claire" last="Debarnot">Claire Debarnot</name>
</author>
<author>
<name sortKey="Imbert, Isabelle" sort="Imbert, Isabelle" uniqKey="Imbert I" first="Isabelle" last="Imbert">Isabelle Imbert</name>
</author>
<author>
<name sortKey="Selisko, Barbara" sort="Selisko, Barbara" uniqKey="Selisko B" first="Barbara" last="Selisko">Barbara Selisko</name>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
</author>
<author>
<name sortKey="Canard, Bruno" sort="Canard, Bruno" uniqKey="Canard B" first="Bruno" last="Canard">Bruno Canard</name>
</author>
<author>
<name sortKey="Decroly, Etienne" sort="Decroly, Etienne" uniqKey="Decroly E" first="Etienne" last="Decroly">Etienne Decroly</name>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Exoribonucleases (chemistry)</term>
<term>Exoribonucleases (genetics)</term>
<term>Exoribonucleases (metabolism)</term>
<term>Gene Expression Regulation, Viral</term>
<term>In Vitro Techniques</term>
<term>Methylation</term>
<term>RNA Caps (chemistry)</term>
<term>RNA Caps (genetics)</term>
<term>RNA Caps (metabolism)</term>
<term>RNA, Messenger</term>
<term>SARS Virus (chemistry)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (metabolism)</term>
<term>Viral Nonstructural Proteins (chemistry)</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
<term>tRNA Methyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Exoribonucleases</term>
<term>RNA Caps</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Exoribonucleases</term>
<term>RNA Caps</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Exoribonucleases</term>
<term>RNA Caps</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Viral</term>
<term>In Vitro Techniques</term>
<term>Methylation</term>
<term>RNA, Messenger</term>
<term>tRNA Methyltransferases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5' end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2'O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 (7Me)GpppA-RNAs. The latter are then selectively 2'O-methylated by the 2'O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 (7Me)GpppA(2'OMe)-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC(50) values in the micromolar range, providing a validated basis for anti-coronavirus drug design.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20421945</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2010</Year>
<Month>Apr</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>In vitro reconstitution of SARS-coronavirus mRNA cap methylation.</ArticleTitle>
<Pagination>
<MedlinePgn>e1000863</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1000863</ELocationID>
<Abstract>
<AbstractText>SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5' end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively involved in viral mRNA cap formation. The S-adenosyl-L-methionine (AdoMet)-dependent (guanine-N7)-methyltransferase (N7-MTase) activity was recently attributed to nsp14, whereas nsp16 has been predicted to be the AdoMet-dependent (nucleoside-2'O)-methyltransferase. Here, we have reconstituted complete SARS-CoV mRNA cap methylation in vitro. We show that mRNA cap methylation requires a third viral protein, nsp10, which acts as an essential trigger to complete RNA cap-1 formation. The obligate sequence of methylation events is initiated by nsp14, which first methylates capped RNA transcripts to generate cap-0 (7Me)GpppA-RNAs. The latter are then selectively 2'O-methylated by the 2'O-MTase nsp16 in complex with its activator nsp10 to give rise to cap-1 (7Me)GpppA(2'OMe)-RNAs. Furthermore, sensitive in vitro inhibition assays of both activities show that aurintricarboxylic acid, active in SARS-CoV infected cells, targets both MTases with IC(50) values in the micromolar range, providing a validated basis for anti-coronavirus drug design.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bouvet</LastName>
<ForeName>Mickaël</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Architecture et Fonction des Macromolécules Biologiques, CNRS and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Debarnot</LastName>
<ForeName>Claire</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Imbert</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Selisko</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Snijder</LastName>
<ForeName>Eric J</ForeName>
<Initials>EJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Canard</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Decroly</LastName>
<ForeName>Etienne</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>04</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012315">RNA Caps</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D012359">tRNA Methyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.56</RegistryNumber>
<NameOfSubstance UI="C525596">nsp14 protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005095">Exoribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>PLoS Pathog. 2010;6(5). doi: 10.1371/annotation/a0dde376-2eb1-4ce3-8887-d29f5ba6f162</RefSource>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D005095" MajorTopicYN="N">Exoribonucleases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015967" MajorTopicYN="N">Gene Expression Regulation, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D066298" MajorTopicYN="N">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008745" MajorTopicYN="N">Methylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012315" MajorTopicYN="N">RNA Caps</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012359" MajorTopicYN="N">tRNA Methyltransferases</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>03</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20421945</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1000863</ArticleId>
<ArticleId IdType="pmc">PMC2858705</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biomol Screen. 2005 Jun;10(4):355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2006 Apr;117(1):17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16503362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 30;103(22):8493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Apr;29(7):1944-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19139273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2009 Jul;83(1):28-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19501254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol (Mosk). 2009 May-Jun;43(3):446-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19548531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2007 Dec 15;15(24):7795-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17888664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Nov 20;46(46):13370-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17960915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Nov 28;26(23):4913-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17989694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 May;133(2):136-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18255185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Aug;82(16):8071-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18417574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2008 Oct;80(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18571739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Sep 23;47(38):10000-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18827877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Apr 27;404(6781):960-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2000 Jul;6(7):1056-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10917600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Nucleic Acid Res Mol Biol. 2001;66:1-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11051760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 2002 Feb;15(2):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jun 3;21(11):2757-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2897-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1313572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1993 Oct;67(10):6056-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8396668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Aug 12;269(32):20700-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8051170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2010 Jan;91(Pt 1):112-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19776234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(1):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2010 Aug;87(2):125-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19945487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Dec 2;21(23):6571-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jan 15;31(2):532-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12527760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 13;113(6):701-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12809601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Sep;59(Pt 9):1628-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(1):e14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Cell Biol. 2004 Jun;82(3):369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15181470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(14):7833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Aug 6;320(4):1199-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15249217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1977 Mar 17;266(5599):235-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">557727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Jun 25;253(12):4075-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">659406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1978 Aug;235(2):E97-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">686171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1981 May;38(2):661-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6165837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1981 Oct 10;256(19):10054-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7275966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1982 Feb;41(2):557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6281467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1982 Mar 30;21(7):1535-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6282307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1983 Jan 25;11(2):489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6186987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2005 Dec;1(4):e39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 14;281(28):18953-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16707499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7894-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):7902-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8362-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Nov;80(21):10900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Oct 18;25(20):4933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17024178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(1):20-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(8):3891-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17267492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(8):4104-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17301155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(4):e26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 May;81(9):4412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17301144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(12):6356-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jul;81(13):7086-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):723-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17686489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Sep 30;269(39):24472-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Jun;69(6):3554-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7745703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Mar 15;217(2):527-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8610444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Sep 11;273(37):23773-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9726986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Feb;15(1):99-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718140</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001705 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001705 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20421945
   |texte=   In vitro reconstitution of SARS-coronavirus mRNA cap methylation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20421945" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021