Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.

Identifieur interne : 001681 ( PubMed/Corpus ); précédent : 001680; suivant : 001682

The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.

Auteurs : Linghui Xu ; Siti Khadijah ; Shouguo Fang ; Li Wang ; Felicia P L. Tay ; Ding Xiang Liu

Source :

RBID : pubmed:20573827

English descriptors

Abstract

The involvement of host proteins in the replication and transcription of viral RNA is a poorly understood area for many RNA viruses. For coronaviruses, it was long speculated that replication of the giant RNA genome and transcription of multiple subgenomic mRNA species by a unique discontinuous transcription mechanism may require host cofactors. To search for such cellular proteins, yeast two-hybrid screening was carried out by using the nonstructural protein 14 (nsp14) from the coronavirus infectious bronchitis virus (IBV) as a bait protein, leading to the identification of DDX1, a cellular RNA helicase in the DExD/H helicase family, as a potential interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation assays with cells coexpressing the two proteins and with IBV-infected cells. Furthermore, the endogenous DDX1 protein was found to be relocated from the nucleus to the cytoplasm in IBV-infected cells. In addition to its interaction with IBV nsp14, DDX1 could also interact with the nsp14 protein from severe acute respiratory syndrome coronavirus (SARS-CoV), suggesting that interaction with DDX1 may be a general feature of coronavirus nsp14. The interacting domains were mapped to the C-terminal region of DDX1 containing motifs V and VI and to the N-terminal portion of nsp14. Manipulation of DDX1 expression, either by small interfering RNA-induced knockdown or by overexpression of a mutant DDX1 protein, confirmed that this interaction may enhance IBV replication. This study reveals that DDX1 contributes to efficient coronavirus replication in cell culture.

DOI: 10.1128/JVI.00392-10
PubMed: 20573827

Links to Exploration step

pubmed:20573827

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.</title>
<author>
<name sortKey="Xu, Linghui" sort="Xu, Linghui" uniqKey="Xu L" first="Linghui" last="Xu">Linghui Xu</name>
<affiliation>
<nlm:affiliation>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khadijah, Siti" sort="Khadijah, Siti" uniqKey="Khadijah S" first="Siti" last="Khadijah">Siti Khadijah</name>
</author>
<author>
<name sortKey="Fang, Shouguo" sort="Fang, Shouguo" uniqKey="Fang S" first="Shouguo" last="Fang">Shouguo Fang</name>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
</author>
<author>
<name sortKey="Tay, Felicia P L" sort="Tay, Felicia P L" uniqKey="Tay F" first="Felicia P L" last="Tay">Felicia P L. Tay</name>
</author>
<author>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20573827</idno>
<idno type="pmid">20573827</idno>
<idno type="doi">10.1128/JVI.00392-10</idno>
<idno type="wicri:Area/PubMed/Corpus">001681</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001681</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.</title>
<author>
<name sortKey="Xu, Linghui" sort="Xu, Linghui" uniqKey="Xu L" first="Linghui" last="Xu">Linghui Xu</name>
<affiliation>
<nlm:affiliation>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Khadijah, Siti" sort="Khadijah, Siti" uniqKey="Khadijah S" first="Siti" last="Khadijah">Siti Khadijah</name>
</author>
<author>
<name sortKey="Fang, Shouguo" sort="Fang, Shouguo" uniqKey="Fang S" first="Shouguo" last="Fang">Shouguo Fang</name>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
</author>
<author>
<name sortKey="Tay, Felicia P L" sort="Tay, Felicia P L" uniqKey="Tay F" first="Felicia P L" last="Tay">Felicia P L. Tay</name>
</author>
<author>
<name sortKey="Liu, Ding Xiang" sort="Liu, Ding Xiang" uniqKey="Liu D" first="Ding Xiang" last="Liu">Ding Xiang Liu</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Nucleus (metabolism)</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus Infections (genetics)</term>
<term>Coronavirus Infections (metabolism)</term>
<term>Coronavirus Infections (virology)</term>
<term>Cytoplasm (metabolism)</term>
<term>DEAD-box RNA Helicases (genetics)</term>
<term>DEAD-box RNA Helicases (metabolism)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Infectious bronchitis virus (genetics)</term>
<term>Infectious bronchitis virus (physiology)</term>
<term>Protein Binding</term>
<term>Protein Transport</term>
<term>Two-Hybrid System Techniques</term>
<term>Vero Cells</term>
<term>Viral Nonstructural Proteins (genetics)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DEAD-box RNA Helicases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Infectious bronchitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Coronavirus Infections</term>
<term>Cytoplasm</term>
<term>DEAD-box RNA Helicases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Infectious bronchitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Protein Binding</term>
<term>Protein Transport</term>
<term>Two-Hybrid System Techniques</term>
<term>Vero Cells</term>
<term>Virus Replication</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The involvement of host proteins in the replication and transcription of viral RNA is a poorly understood area for many RNA viruses. For coronaviruses, it was long speculated that replication of the giant RNA genome and transcription of multiple subgenomic mRNA species by a unique discontinuous transcription mechanism may require host cofactors. To search for such cellular proteins, yeast two-hybrid screening was carried out by using the nonstructural protein 14 (nsp14) from the coronavirus infectious bronchitis virus (IBV) as a bait protein, leading to the identification of DDX1, a cellular RNA helicase in the DExD/H helicase family, as a potential interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation assays with cells coexpressing the two proteins and with IBV-infected cells. Furthermore, the endogenous DDX1 protein was found to be relocated from the nucleus to the cytoplasm in IBV-infected cells. In addition to its interaction with IBV nsp14, DDX1 could also interact with the nsp14 protein from severe acute respiratory syndrome coronavirus (SARS-CoV), suggesting that interaction with DDX1 may be a general feature of coronavirus nsp14. The interacting domains were mapped to the C-terminal region of DDX1 containing motifs V and VI and to the N-terminal portion of nsp14. Manipulation of DDX1 expression, either by small interfering RNA-induced knockdown or by overexpression of a mutant DDX1 protein, confirmed that this interaction may enhance IBV replication. This study reveals that DDX1 contributes to efficient coronavirus replication in cell culture.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20573827</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>84</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2010</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.</ArticleTitle>
<Pagination>
<MedlinePgn>8571-83</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00392-10</ELocationID>
<Abstract>
<AbstractText>The involvement of host proteins in the replication and transcription of viral RNA is a poorly understood area for many RNA viruses. For coronaviruses, it was long speculated that replication of the giant RNA genome and transcription of multiple subgenomic mRNA species by a unique discontinuous transcription mechanism may require host cofactors. To search for such cellular proteins, yeast two-hybrid screening was carried out by using the nonstructural protein 14 (nsp14) from the coronavirus infectious bronchitis virus (IBV) as a bait protein, leading to the identification of DDX1, a cellular RNA helicase in the DExD/H helicase family, as a potential interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation assays with cells coexpressing the two proteins and with IBV-infected cells. Furthermore, the endogenous DDX1 protein was found to be relocated from the nucleus to the cytoplasm in IBV-infected cells. In addition to its interaction with IBV nsp14, DDX1 could also interact with the nsp14 protein from severe acute respiratory syndrome coronavirus (SARS-CoV), suggesting that interaction with DDX1 may be a general feature of coronavirus nsp14. The interacting domains were mapped to the C-terminal region of DDX1 containing motifs V and VI and to the N-terminal portion of nsp14. Manipulation of DDX1 expression, either by small interfering RNA-induced knockdown or by overexpression of a mutant DDX1 protein, confirmed that this interaction may enhance IBV replication. This study reveals that DDX1 contributes to efficient coronavirus replication in cell culture.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Linghui</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khadijah</LastName>
<ForeName>Siti</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Shouguo</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tay</LastName>
<ForeName>Felicia P L</ForeName>
<Initials>FP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Ding Xiang</ForeName>
<Initials>DX</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017361">Viral Nonstructural Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C087633">nonstructural protein, coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C086252">DDX1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="D053487">DEAD-box RNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053487" MajorTopicYN="N">DEAD-box RNA Helicases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001351" MajorTopicYN="N">Infectious bronchitis virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020798" MajorTopicYN="N">Two-Hybrid System Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017361" MajorTopicYN="N">Viral Nonstructural Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="Y">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20573827</ArticleId>
<ArticleId IdType="pii">JVI.00392-10</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00392-10</ArticleId>
<ArticleId IdType="pmc">PMC2918985</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2005 Nov 11;353(5):1106-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16216269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Oct 21;336(2):417-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16137658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jun;87(Pt 6):1403-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2005 Dec;1(4):e39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Jul 20;25(31):4320-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16518412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Sep 1;347(3):683-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16842740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Aug 11;361(2):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16828802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11892-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(15):4206-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16935882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Nov;80(21):10900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(17):4816-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(1):20-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 May;6(5):e1000896</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Feb;74(4):1674-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10644337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Jun 20;272(1):27-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10873746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Sep 1;19(17):4701-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10970862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2001 Sep 30;288(2):212-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11601893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Apr 1;208(1):48-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11831730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jun;76(12):6257-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12021359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Jul 17;312:1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12909336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2004 Mar;5(3):232-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14991003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 May;78(10):5288-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15113910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Oct 29;119(3):381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12218-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3095828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1987 Jan;68 ( Pt 1):57-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3027249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Jun 26;17(12):4847-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2526320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Dec;185(2):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1962461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Jan;186(1):342-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1309280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Jul;11(7):2643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1378397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Mar;70(3):1923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8627718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Mar;71(3):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9032311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Apr 10;243(2):388-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9568037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Jun 5;245(2):303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Jul 5;246(2):288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 1998;33(4):259-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9747670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:173-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jun 18;274(25):17677-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Dec 20;330(2):471-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15567440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:31-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Jun 5;336(2):299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15892970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Feb 5;358(1):136-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Microbiol. 2006 Dec;1(4):417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17804504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2008 Aug;36(Pt 4):609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18631126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biochem. 2009 Feb 1;106(2):296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19058135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3484-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jun;83(11):5815-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19297497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Sep;83(17):8744-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2010 Jan;91(Pt 1):122-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19793905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Feb 15;367:17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337753</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001681 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001681 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20573827
   |texte=   The cellular RNA helicase DDX1 interacts with coronavirus nonstructural protein 14 and enhances viral replication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20573827" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021