Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The impact of matching vaccine strains and post-SARS public health efforts on reducing influenza-associated mortality among the elderly.

Identifieur interne : 001672 ( PubMed/Corpus ); précédent : 001671; suivant : 001673

The impact of matching vaccine strains and post-SARS public health efforts on reducing influenza-associated mortality among the elderly.

Auteurs : Ta-Chien Chan ; Chuhsing Kate Hsiao ; Chang-Chun Lee ; Po-Huang Chiang ; Chuan-Liang Kao ; Chung-Ming Liu ; Chwan-Chuen King

Source :

RBID : pubmed:20592764

English descriptors

Abstract

Public health administrators do not have effective models to predict excess influenza-associated mortality and monitor viral changes associated with it. This study evaluated the effect of matching/mismatching vaccine strains, type/subtype pattern changes in Taiwan's influenza viruses, and the impact of post-SARS (severe acute respiratory syndrome) public health efforts on excess influenza-associated mortalities among the elderly. A negative binomial model was developed to estimate Taiwan's monthly influenza-associated mortality among the elderly. We calculated three winter and annual excess influenza-associated mortalities [pneumonia and influenza (P&I), respiratory and circulatory, and all-cause] from the 1999-2000 through the 2006-2007 influenza seasons. Obtaining influenza virus sequences from the months/years in which death from P&I was excessive, we investigated molecular variation in vaccine-mismatched influenza viruses by comparing hemagglutinin 1 (HA1) of the circulating and vaccine strains. We found that the higher the isolation rate of A (H3N2) and vaccine-mismatched influenza viruses, the greater the monthly P&I mortality. However, this significant positive association became negative for higher matching of A (H3N2) and public health efforts with post-SARS effect. Mean excess P&I mortality for winters was significantly higher before 2003 than after that year [mean +/- S.D.: 1.44+/-1.35 vs. 0.35+/-1.13, p = 0.04]. Further analysis revealed that vaccine-matched circulating influenza A viruses were significantly associated with lower excess P&I mortality during post-SARS winters (i.e., 2005-2007) than during pre-SARS winters [0.03+/-0.06 vs. 1.57+/-1.27, p = 0.01]. Stratification of these vaccine-matching and post-SARS effect showed substantial trends toward lower elderly excess P&I mortalities in winters with either mismatching vaccines during the post-SARS period or matching vaccines during the pre-SARS period. Importantly, all three excess mortalities were at their highest in May, 2003, when inter-hospital nosocomial infections were peaking. Furthermore, vaccine-mismatched H3N2 viruses circulating in the years with high excess P&I mortality exhibited both a lower amino acid identity percentage of HA1 between vaccine and circulating strains and a higher numbers of variations at epitope B. Our model can help future decision makers to estimate excess P&I mortality effectively, select and test virus strains for antigenic variation, and evaluate public health strategy effectiveness.

DOI: 10.1371/journal.pone.0011317
PubMed: 20592764

Links to Exploration step

pubmed:20592764

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The impact of matching vaccine strains and post-SARS public health efforts on reducing influenza-associated mortality among the elderly.</title>
<author>
<name sortKey="Chan, Ta Chien" sort="Chan, Ta Chien" uniqKey="Chan T" first="Ta-Chien" last="Chan">Ta-Chien Chan</name>
<affiliation>
<nlm:affiliation>Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hsiao, Chuhsing Kate" sort="Hsiao, Chuhsing Kate" uniqKey="Hsiao C" first="Chuhsing Kate" last="Hsiao">Chuhsing Kate Hsiao</name>
</author>
<author>
<name sortKey="Lee, Chang Chun" sort="Lee, Chang Chun" uniqKey="Lee C" first="Chang-Chun" last="Lee">Chang-Chun Lee</name>
</author>
<author>
<name sortKey="Chiang, Po Huang" sort="Chiang, Po Huang" uniqKey="Chiang P" first="Po-Huang" last="Chiang">Po-Huang Chiang</name>
</author>
<author>
<name sortKey="Kao, Chuan Liang" sort="Kao, Chuan Liang" uniqKey="Kao C" first="Chuan-Liang" last="Kao">Chuan-Liang Kao</name>
</author>
<author>
<name sortKey="Liu, Chung Ming" sort="Liu, Chung Ming" uniqKey="Liu C" first="Chung-Ming" last="Liu">Chung-Ming Liu</name>
</author>
<author>
<name sortKey="King, Chwan Chuen" sort="King, Chwan Chuen" uniqKey="King C" first="Chwan-Chuen" last="King">Chwan-Chuen King</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20592764</idno>
<idno type="pmid">20592764</idno>
<idno type="doi">10.1371/journal.pone.0011317</idno>
<idno type="wicri:Area/PubMed/Corpus">001672</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001672</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The impact of matching vaccine strains and post-SARS public health efforts on reducing influenza-associated mortality among the elderly.</title>
<author>
<name sortKey="Chan, Ta Chien" sort="Chan, Ta Chien" uniqKey="Chan T" first="Ta-Chien" last="Chan">Ta-Chien Chan</name>
<affiliation>
<nlm:affiliation>Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hsiao, Chuhsing Kate" sort="Hsiao, Chuhsing Kate" uniqKey="Hsiao C" first="Chuhsing Kate" last="Hsiao">Chuhsing Kate Hsiao</name>
</author>
<author>
<name sortKey="Lee, Chang Chun" sort="Lee, Chang Chun" uniqKey="Lee C" first="Chang-Chun" last="Lee">Chang-Chun Lee</name>
</author>
<author>
<name sortKey="Chiang, Po Huang" sort="Chiang, Po Huang" uniqKey="Chiang P" first="Po-Huang" last="Chiang">Po-Huang Chiang</name>
</author>
<author>
<name sortKey="Kao, Chuan Liang" sort="Kao, Chuan Liang" uniqKey="Kao C" first="Chuan-Liang" last="Kao">Chuan-Liang Kao</name>
</author>
<author>
<name sortKey="Liu, Chung Ming" sort="Liu, Chung Ming" uniqKey="Liu C" first="Chung-Ming" last="Liu">Chung-Ming Liu</name>
</author>
<author>
<name sortKey="King, Chwan Chuen" sort="King, Chwan Chuen" uniqKey="King C" first="Chwan-Chuen" last="King">Chwan-Chuen King</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aged</term>
<term>Humans</term>
<term>Influenza Vaccines (administration & dosage)</term>
<term>Influenza, Human (mortality)</term>
<term>Influenza, Human (prevention & control)</term>
<term>Influenza, Human (virology)</term>
<term>Population Surveillance</term>
<term>Public Health Practice</term>
<term>Severe Acute Respiratory Syndrome (epidemiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Influenza Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="mortality" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Humans</term>
<term>Population Surveillance</term>
<term>Public Health Practice</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Public health administrators do not have effective models to predict excess influenza-associated mortality and monitor viral changes associated with it. This study evaluated the effect of matching/mismatching vaccine strains, type/subtype pattern changes in Taiwan's influenza viruses, and the impact of post-SARS (severe acute respiratory syndrome) public health efforts on excess influenza-associated mortalities among the elderly. A negative binomial model was developed to estimate Taiwan's monthly influenza-associated mortality among the elderly. We calculated three winter and annual excess influenza-associated mortalities [pneumonia and influenza (P&I), respiratory and circulatory, and all-cause] from the 1999-2000 through the 2006-2007 influenza seasons. Obtaining influenza virus sequences from the months/years in which death from P&I was excessive, we investigated molecular variation in vaccine-mismatched influenza viruses by comparing hemagglutinin 1 (HA1) of the circulating and vaccine strains. We found that the higher the isolation rate of A (H3N2) and vaccine-mismatched influenza viruses, the greater the monthly P&I mortality. However, this significant positive association became negative for higher matching of A (H3N2) and public health efforts with post-SARS effect. Mean excess P&I mortality for winters was significantly higher before 2003 than after that year [mean +/- S.D.: 1.44+/-1.35 vs. 0.35+/-1.13, p = 0.04]. Further analysis revealed that vaccine-matched circulating influenza A viruses were significantly associated with lower excess P&I mortality during post-SARS winters (i.e., 2005-2007) than during pre-SARS winters [0.03+/-0.06 vs. 1.57+/-1.27, p = 0.01]. Stratification of these vaccine-matching and post-SARS effect showed substantial trends toward lower elderly excess P&I mortalities in winters with either mismatching vaccines during the post-SARS period or matching vaccines during the pre-SARS period. Importantly, all three excess mortalities were at their highest in May, 2003, when inter-hospital nosocomial infections were peaking. Furthermore, vaccine-mismatched H3N2 viruses circulating in the years with high excess P&I mortality exhibited both a lower amino acid identity percentage of HA1 between vaccine and circulating strains and a higher numbers of variations at epitope B. Our model can help future decision makers to estimate excess P&I mortality effectively, select and test virus strains for antigenic variation, and evaluate public health strategy effectiveness.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20592764</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>The impact of matching vaccine strains and post-SARS public health efforts on reducing influenza-associated mortality among the elderly.</ArticleTitle>
<Pagination>
<MedlinePgn>e11317</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0011317</ELocationID>
<Abstract>
<AbstractText>Public health administrators do not have effective models to predict excess influenza-associated mortality and monitor viral changes associated with it. This study evaluated the effect of matching/mismatching vaccine strains, type/subtype pattern changes in Taiwan's influenza viruses, and the impact of post-SARS (severe acute respiratory syndrome) public health efforts on excess influenza-associated mortalities among the elderly. A negative binomial model was developed to estimate Taiwan's monthly influenza-associated mortality among the elderly. We calculated three winter and annual excess influenza-associated mortalities [pneumonia and influenza (P&I), respiratory and circulatory, and all-cause] from the 1999-2000 through the 2006-2007 influenza seasons. Obtaining influenza virus sequences from the months/years in which death from P&I was excessive, we investigated molecular variation in vaccine-mismatched influenza viruses by comparing hemagglutinin 1 (HA1) of the circulating and vaccine strains. We found that the higher the isolation rate of A (H3N2) and vaccine-mismatched influenza viruses, the greater the monthly P&I mortality. However, this significant positive association became negative for higher matching of A (H3N2) and public health efforts with post-SARS effect. Mean excess P&I mortality for winters was significantly higher before 2003 than after that year [mean +/- S.D.: 1.44+/-1.35 vs. 0.35+/-1.13, p = 0.04]. Further analysis revealed that vaccine-matched circulating influenza A viruses were significantly associated with lower excess P&I mortality during post-SARS winters (i.e., 2005-2007) than during pre-SARS winters [0.03+/-0.06 vs. 1.57+/-1.27, p = 0.01]. Stratification of these vaccine-matching and post-SARS effect showed substantial trends toward lower elderly excess P&I mortalities in winters with either mismatching vaccines during the post-SARS period or matching vaccines during the pre-SARS period. Importantly, all three excess mortalities were at their highest in May, 2003, when inter-hospital nosocomial infections were peaking. Furthermore, vaccine-mismatched H3N2 viruses circulating in the years with high excess P&I mortality exhibited both a lower amino acid identity percentage of HA1 between vaccine and circulating strains and a higher numbers of variations at epitope B. Our model can help future decision makers to estimate excess P&I mortality effectively, select and test virus strains for antigenic variation, and evaluate public health strategy effectiveness.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Ta-Chien</ForeName>
<Initials>TC</Initials>
<AffiliationInfo>
<Affiliation>Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hsiao</LastName>
<ForeName>Chuhsing Kate</ForeName>
<Initials>CK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Chang-Chun</ForeName>
<Initials>CC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Po-Huang</ForeName>
<Initials>PH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kao</LastName>
<ForeName>Chuan-Liang</ForeName>
<Initials>CL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chung-Ming</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>King</LastName>
<ForeName>Chwan-Chuen</ForeName>
<Initials>CC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HHSN266200700006C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>2U19AI05726606</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN266200700006C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000368" MajorTopicYN="N">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="Y">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000401" MajorTopicYN="N">mortality</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011159" MajorTopicYN="N">Population Surveillance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015980" MajorTopicYN="Y">Public Health Practice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>01</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20592764</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0011317</ArticleId>
<ArticleId IdType="pmc">PMC2892467</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2006 Oct 30;24(42-43):6468-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16876293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Aug 13;27(37):5033-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19524615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2007 Feb;152(2):415-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17075722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6283-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17395716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cochrane Database Syst Rev. 2007;(2):CD001269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17443504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2007 Aug 8;298(6):644-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Health Policy. 2007 Oct;83(2-3):375-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17445942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 21;451(7181):990-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Public Health. 2008;8:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18201388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Med. 2008 Apr;121(4):258-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18374680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 18;320(5874):340-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18420927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World Hosp Health Serv. 2008;44(1):14-5, 18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18549028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Recomm Rep. 2008 Aug 8;57(RR-7):1-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18685555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2008 Jul 18;26 Suppl 3:C8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18773534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Nov;82(21):10580-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18768976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Health Serv Res. 2008;8:228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Feb;83(4):1742-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19073731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2008 Sep 12;26 Suppl 4:D31-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19230156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect. 2009 Aug;59(2):122-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19592114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Sep;83(18):9206-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Oct 23;27(45):6363-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19840674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(11):e7962</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2009;339:b5213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2003 Jan 8;289(2):179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 16;305(5682):371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15218094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Health Educ Res. 2004 Oct;19(5):576-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Infect. 1998 Aug;121(1):121-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9747763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prev Med. 2004 Dec;39(6):1187-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15539054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Intern Med. 2005 Feb 14;165(3):265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15710788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2005 Apr;43(4):1651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Immunol Infect. 2005 Aug;38(4):238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16118670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2005 Dec;77(4):541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Public Health. 2006 Jan;120(1):8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Infect Control. 2005 Dec;33(10):580-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16330306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2006 Feb 20;24(8):1159-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16213065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cochrane Database Syst Rev. 2006;(3):CD004876</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16856068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2006 Aug;44(8):2705-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Equine Vet J. 2009 Jan;41(1):87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19301588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2009;6:30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19284639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Apr 21;27(18):2447-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19368786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jan 26;25(7):1196-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17097773</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001672 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001672 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20592764
   |texte=   The impact of matching vaccine strains and post-SARS public health efforts on reducing influenza-associated mortality among the elderly.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20592764" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021