Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autophagy-independent LC3 function in vesicular traffic.

Identifieur interne : 001637 ( PubMed/Corpus ); précédent : 001636; suivant : 001638

Autophagy-independent LC3 function in vesicular traffic.

Auteurs : Cornelis A M. De Haan ; Maurizio Molinari ; Fulvio Reggiori

Source :

RBID : pubmed:20814233

English descriptors

Abstract

As protein folding is an imperfect process, the endoplasmic reticulum (ER) contains folding as well as ER-associated degradation (ERAD) machineries. In order to prevent premature interruption of folding, ERAD regulators and effectors such as EDEM1 and OS-9 are selectively cleared from the ER in so-called EDEMosomes to downregulate the degradative activity. The mechanism by which EDEM1 and OS-9 are subjected to rapid turnover, also known as ERAD tuning, shows similarities with, but is clearly distinct from, macroautophagy. Positive strand RNA coronaviruses (CoVs) such as the severe acute respiratory syndrome (SARS)-CoV and mouse hepatitis virus (MHV), induce in infected cells the formation of autophagosome-like, double-membrane vesicles (DMVs) to which their replication and transcription complexes are anchored. While it seems clear that CoVs hijack ER-derived host cell membranes for replication, the mechanism by which these DMVs are assembled has remained completely mysterious.

DOI: 10.4161/auto.6.7.13309
PubMed: 20814233

Links to Exploration step

pubmed:20814233

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autophagy-independent LC3 function in vesicular traffic.</title>
<author>
<name sortKey="De Haan, Cornelis A M" sort="De Haan, Cornelis A M" uniqKey="De Haan C" first="Cornelis A M" last="De Haan">Cornelis A M. De Haan</name>
<affiliation>
<nlm:affiliation>Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands. C.A.M.deHaan@uu.nl</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Molinari, Maurizio" sort="Molinari, Maurizio" uniqKey="Molinari M" first="Maurizio" last="Molinari">Maurizio Molinari</name>
</author>
<author>
<name sortKey="Reggiori, Fulvio" sort="Reggiori, Fulvio" uniqKey="Reggiori F" first="Fulvio" last="Reggiori">Fulvio Reggiori</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20814233</idno>
<idno type="pmid">20814233</idno>
<idno type="doi">10.4161/auto.6.7.13309</idno>
<idno type="wicri:Area/PubMed/Corpus">001637</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001637</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Autophagy-independent LC3 function in vesicular traffic.</title>
<author>
<name sortKey="De Haan, Cornelis A M" sort="De Haan, Cornelis A M" uniqKey="De Haan C" first="Cornelis A M" last="De Haan">Cornelis A M. De Haan</name>
<affiliation>
<nlm:affiliation>Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands. C.A.M.deHaan@uu.nl</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Molinari, Maurizio" sort="Molinari, Maurizio" uniqKey="Molinari M" first="Maurizio" last="Molinari">Maurizio Molinari</name>
</author>
<author>
<name sortKey="Reggiori, Fulvio" sort="Reggiori, Fulvio" uniqKey="Reggiori F" first="Fulvio" last="Reggiori">Fulvio Reggiori</name>
</author>
</analytic>
<series>
<title level="j">Autophagy</title>
<idno type="eISSN">1554-8635</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Autophagy (physiology)</term>
<term>Coronaviridae (genetics)</term>
<term>Coronaviridae (metabolism)</term>
<term>Endoplasmic Reticulum (metabolism)</term>
<term>Humans</term>
<term>Mice</term>
<term>Microtubule-Associated Proteins (genetics)</term>
<term>Microtubule-Associated Proteins (metabolism)</term>
<term>Protein Folding</term>
<term>Transport Vesicles (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Microtubule-Associated Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronaviridae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Coronaviridae</term>
<term>Endoplasmic Reticulum</term>
<term>Microtubule-Associated Proteins</term>
<term>Transport Vesicles</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Autophagy</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Mice</term>
<term>Protein Folding</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">As protein folding is an imperfect process, the endoplasmic reticulum (ER) contains folding as well as ER-associated degradation (ERAD) machineries. In order to prevent premature interruption of folding, ERAD regulators and effectors such as EDEM1 and OS-9 are selectively cleared from the ER in so-called EDEMosomes to downregulate the degradative activity. The mechanism by which EDEM1 and OS-9 are subjected to rapid turnover, also known as ERAD tuning, shows similarities with, but is clearly distinct from, macroautophagy. Positive strand RNA coronaviruses (CoVs) such as the severe acute respiratory syndrome (SARS)-CoV and mouse hepatitis virus (MHV), induce in infected cells the formation of autophagosome-like, double-membrane vesicles (DMVs) to which their replication and transcription complexes are anchored. While it seems clear that CoVs hijack ER-derived host cell membranes for replication, the mechanism by which these DMVs are assembled has remained completely mysterious.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20814233</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>03</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2011</Year>
<Month>06</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1554-8635</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2010</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Autophagy</Title>
<ISOAbbreviation>Autophagy</ISOAbbreviation>
</Journal>
<ArticleTitle>Autophagy-independent LC3 function in vesicular traffic.</ArticleTitle>
<Pagination>
<MedlinePgn>994-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/auto.6.7.13309</ELocationID>
<Abstract>
<AbstractText>As protein folding is an imperfect process, the endoplasmic reticulum (ER) contains folding as well as ER-associated degradation (ERAD) machineries. In order to prevent premature interruption of folding, ERAD regulators and effectors such as EDEM1 and OS-9 are selectively cleared from the ER in so-called EDEMosomes to downregulate the degradative activity. The mechanism by which EDEM1 and OS-9 are subjected to rapid turnover, also known as ERAD tuning, shows similarities with, but is clearly distinct from, macroautophagy. Positive strand RNA coronaviruses (CoVs) such as the severe acute respiratory syndrome (SARS)-CoV and mouse hepatitis virus (MHV), induce in infected cells the formation of autophagosome-like, double-membrane vesicles (DMVs) to which their replication and transcription complexes are anchored. While it seems clear that CoVs hijack ER-derived host cell membranes for replication, the mechanism by which these DMVs are assembled has remained completely mysterious.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>de Haan</LastName>
<ForeName>Cornelis A M</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands. C.A.M.deHaan@uu.nl</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Molinari</LastName>
<ForeName>Maurizio</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reggiori</LastName>
<ForeName>Fulvio</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>10</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Autophagy</MedlineTA>
<NlmUniqueID>101265188</NlmUniqueID>
<ISSNLinking>1554-8627</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C466626">light chain 3, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003332" MajorTopicYN="N">Coronaviridae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022161" MajorTopicYN="N">Transport Vesicles</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20814233</ArticleId>
<ArticleId IdType="pii">13309</ArticleId>
<ArticleId IdType="doi">10.4161/auto.6.7.13309</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001637 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001637 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20814233
   |texte=   Autophagy-independent LC3 function in vesicular traffic.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20814233" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021