Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced cell fusion activity in porcine epidemic diarrhea virus adapted to suckling mice.

Identifieur interne : 001633 ( PubMed/Corpus ); précédent : 001632; suivant : 001634

Enhanced cell fusion activity in porcine epidemic diarrhea virus adapted to suckling mice.

Auteurs : Kazuya Shirato ; Madoka Maejima ; Asuka Hirai ; Yasushi Ami ; Natsumi Takeyama ; Kotaro Tsuchiya ; Kouich Kusanagi ; Tetsuo Nunoya ; Fumihiro Taguchi

Source :

RBID : pubmed:20827493

English descriptors

Abstract

Porcine epidemic diarrhea virus (PEDV) is the major causative agent of fatal diarrhea in piglets. To study the pathogenic features of PEDV using a mouse model, PEDV with virulence in mice is required. In pursuit of this, we adapted a tissue-culture-passed PEDV MK strain to suckling mouse brains. PEDV obtained after ten passages through the brains (MK-p10) had increased virulence for mice, and its fusion activity in cultured cells exceeded that of the original strain. However, the replication kinetics of MK and MK-p10 did not differ from each other in the brain and in cultured cells. The spike (S) protein of MK-p10 had four amino acid substitutions relative to the original strain. One of these (an H-to-R substitution at residue 1,381) was first detected in PEDV isolated after eight passages, and both this virus (MK-p8) and MK-p10 showed enhanced syncytium formation relative to the original MK strain and viruses isolated after two, four, and six passages, suggesting the possibility that the H-to-R mutation was responsible for this activity. This mutation could be also involved in the increased virulence of PEDV observed for MK-p10.

DOI: 10.1007/s00705-010-0790-1
PubMed: 20827493

Links to Exploration step

pubmed:20827493

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhanced cell fusion activity in porcine epidemic diarrhea virus adapted to suckling mice.</title>
<author>
<name sortKey="Shirato, Kazuya" sort="Shirato, Kazuya" uniqKey="Shirato K" first="Kazuya" last="Shirato">Kazuya Shirato</name>
<affiliation>
<nlm:affiliation>Department of Virology III, Laboratory of Acute Respiratory Viral Diseases and Cytokines, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maejima, Madoka" sort="Maejima, Madoka" uniqKey="Maejima M" first="Madoka" last="Maejima">Madoka Maejima</name>
</author>
<author>
<name sortKey="Hirai, Asuka" sort="Hirai, Asuka" uniqKey="Hirai A" first="Asuka" last="Hirai">Asuka Hirai</name>
</author>
<author>
<name sortKey="Ami, Yasushi" sort="Ami, Yasushi" uniqKey="Ami Y" first="Yasushi" last="Ami">Yasushi Ami</name>
</author>
<author>
<name sortKey="Takeyama, Natsumi" sort="Takeyama, Natsumi" uniqKey="Takeyama N" first="Natsumi" last="Takeyama">Natsumi Takeyama</name>
</author>
<author>
<name sortKey="Tsuchiya, Kotaro" sort="Tsuchiya, Kotaro" uniqKey="Tsuchiya K" first="Kotaro" last="Tsuchiya">Kotaro Tsuchiya</name>
</author>
<author>
<name sortKey="Kusanagi, Kouich" sort="Kusanagi, Kouich" uniqKey="Kusanagi K" first="Kouich" last="Kusanagi">Kouich Kusanagi</name>
</author>
<author>
<name sortKey="Nunoya, Tetsuo" sort="Nunoya, Tetsuo" uniqKey="Nunoya T" first="Tetsuo" last="Nunoya">Tetsuo Nunoya</name>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20827493</idno>
<idno type="pmid">20827493</idno>
<idno type="doi">10.1007/s00705-010-0790-1</idno>
<idno type="wicri:Area/PubMed/Corpus">001633</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001633</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhanced cell fusion activity in porcine epidemic diarrhea virus adapted to suckling mice.</title>
<author>
<name sortKey="Shirato, Kazuya" sort="Shirato, Kazuya" uniqKey="Shirato K" first="Kazuya" last="Shirato">Kazuya Shirato</name>
<affiliation>
<nlm:affiliation>Department of Virology III, Laboratory of Acute Respiratory Viral Diseases and Cytokines, Musashimurayama, Tokyo, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maejima, Madoka" sort="Maejima, Madoka" uniqKey="Maejima M" first="Madoka" last="Maejima">Madoka Maejima</name>
</author>
<author>
<name sortKey="Hirai, Asuka" sort="Hirai, Asuka" uniqKey="Hirai A" first="Asuka" last="Hirai">Asuka Hirai</name>
</author>
<author>
<name sortKey="Ami, Yasushi" sort="Ami, Yasushi" uniqKey="Ami Y" first="Yasushi" last="Ami">Yasushi Ami</name>
</author>
<author>
<name sortKey="Takeyama, Natsumi" sort="Takeyama, Natsumi" uniqKey="Takeyama N" first="Natsumi" last="Takeyama">Natsumi Takeyama</name>
</author>
<author>
<name sortKey="Tsuchiya, Kotaro" sort="Tsuchiya, Kotaro" uniqKey="Tsuchiya K" first="Kotaro" last="Tsuchiya">Kotaro Tsuchiya</name>
</author>
<author>
<name sortKey="Kusanagi, Kouich" sort="Kusanagi, Kouich" uniqKey="Kusanagi K" first="Kouich" last="Kusanagi">Kouich Kusanagi</name>
</author>
<author>
<name sortKey="Nunoya, Tetsuo" sort="Nunoya, Tetsuo" uniqKey="Nunoya T" first="Tetsuo" last="Nunoya">Tetsuo Nunoya</name>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</author>
</analytic>
<series>
<title level="j">Archives of virology</title>
<idno type="eISSN">1432-8798</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Amino Acid Substitution (genetics)</term>
<term>Animals</term>
<term>Brain (virology)</term>
<term>Cell Fusion</term>
<term>Cells, Cultured</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Mice</term>
<term>Mice, Inbred ICR</term>
<term>Porcine epidemic diarrhea virus (genetics)</term>
<term>Porcine epidemic diarrhea virus (pathogenicity)</term>
<term>Pregnancy</term>
<term>Serial Passage</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Porcine epidemic diarrhea virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Porcine epidemic diarrhea virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Animals</term>
<term>Cell Fusion</term>
<term>Cells, Cultured</term>
<term>Disease Models, Animal</term>
<term>Female</term>
<term>Mice</term>
<term>Mice, Inbred ICR</term>
<term>Pregnancy</term>
<term>Serial Passage</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Porcine epidemic diarrhea virus (PEDV) is the major causative agent of fatal diarrhea in piglets. To study the pathogenic features of PEDV using a mouse model, PEDV with virulence in mice is required. In pursuit of this, we adapted a tissue-culture-passed PEDV MK strain to suckling mouse brains. PEDV obtained after ten passages through the brains (MK-p10) had increased virulence for mice, and its fusion activity in cultured cells exceeded that of the original strain. However, the replication kinetics of MK and MK-p10 did not differ from each other in the brain and in cultured cells. The spike (S) protein of MK-p10 had four amino acid substitutions relative to the original strain. One of these (an H-to-R substitution at residue 1,381) was first detected in PEDV isolated after eight passages, and both this virus (MK-p8) and MK-p10 showed enhanced syncytium formation relative to the original MK strain and viruses isolated after two, four, and six passages, suggesting the possibility that the H-to-R mutation was responsible for this activity. This mutation could be also involved in the increased virulence of PEDV observed for MK-p10.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20827493</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>12</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-8798</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>155</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2010</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Archives of virology</Title>
<ISOAbbreviation>Arch. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhanced cell fusion activity in porcine epidemic diarrhea virus adapted to suckling mice.</ArticleTitle>
<Pagination>
<MedlinePgn>1989-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00705-010-0790-1</ELocationID>
<Abstract>
<AbstractText>Porcine epidemic diarrhea virus (PEDV) is the major causative agent of fatal diarrhea in piglets. To study the pathogenic features of PEDV using a mouse model, PEDV with virulence in mice is required. In pursuit of this, we adapted a tissue-culture-passed PEDV MK strain to suckling mouse brains. PEDV obtained after ten passages through the brains (MK-p10) had increased virulence for mice, and its fusion activity in cultured cells exceeded that of the original strain. However, the replication kinetics of MK and MK-p10 did not differ from each other in the brain and in cultured cells. The spike (S) protein of MK-p10 had four amino acid substitutions relative to the original strain. One of these (an H-to-R substitution at residue 1,381) was first detected in PEDV isolated after eight passages, and both this virus (MK-p8) and MK-p10 showed enhanced syncytium formation relative to the original MK strain and viruses isolated after two, four, and six passages, suggesting the possibility that the H-to-R mutation was responsible for this activity. This mutation could be also involved in the increased virulence of PEDV observed for MK-p10.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shirato</LastName>
<ForeName>Kazuya</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology III, Laboratory of Acute Respiratory Viral Diseases and Cytokines, Musashimurayama, Tokyo, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maejima</LastName>
<ForeName>Madoka</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hirai</LastName>
<ForeName>Asuka</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ami</LastName>
<ForeName>Yasushi</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Takeyama</LastName>
<ForeName>Natsumi</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsuchiya</LastName>
<ForeName>Kotaro</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kusanagi</LastName>
<ForeName>Kouich</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nunoya</LastName>
<ForeName>Tetsuo</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Taguchi</LastName>
<ForeName>Fumihiro</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Austria</Country>
<MedlineTA>Arch Virol</MedlineTA>
<NlmUniqueID>7506870</NlmUniqueID>
<ISSNLinking>0304-8608</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000220" MajorTopicYN="Y">Adaptation, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001921" MajorTopicYN="N">Brain</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002459" MajorTopicYN="Y">Cell Fusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008813" MajorTopicYN="N">Mice, Inbred ICR</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053485" MajorTopicYN="N">Porcine epidemic diarrhea virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012692" MajorTopicYN="N">Serial Passage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>02</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20827493</ArticleId>
<ArticleId IdType="doi">10.1007/s00705-010-0790-1</ArticleId>
<ArticleId IdType="pmc">PMC7086807</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):417-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1350661</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2007 Aug 15;365(1):166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17467767</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5533-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1648219</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Vet Med Sci. 1992 Apr;54(2):313-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1318752</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 1978;58(3):243-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">83132</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Somatic Cell Genet. 1982 Jan;8(1):83-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6285532</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2009 Aug 24;6:131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19698190</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2001 Oct 25;289(2):230-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689046</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Jan;79(1):503-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596843</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339739</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1996 Dec;70(12):8669-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970993</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731233</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 1988 Dec;69 ( Pt 12):2939-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3058868</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Exp Med Biol. 1998;440:69-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9782266</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1991 Dec;65(12):6881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1719235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Pathol. 2008 Jun;172(6):1625-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467696</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):548-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108024</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Jan;83(2):712-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18971274</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1967 Dec;58(6):2268-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4298953</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Int J Exp Pathol. 2007 Dec;88(6):403-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039277</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Jul 9;319(4):1216-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194496</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001633 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001633 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:20827493
   |texte=   Enhanced cell fusion activity in porcine epidemic diarrhea virus adapted to suckling mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:20827493" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021