Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.

Identifieur interne : 001538 ( PubMed/Corpus ); précédent : 001537; suivant : 001539

A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.

Auteurs : Kailang Wu ; Lang Chen ; Guiqing Peng ; Wenbo Zhou ; Christopher A. Pennell ; Louis M. Mansky ; Robert J. Geraghty ; Fang Li

Source :

RBID : pubmed:21411533

English descriptors

Abstract

How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.

DOI: 10.1128/JVI.02274-10
PubMed: 21411533

Links to Exploration step

pubmed:21411533

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.</title>
<author>
<name sortKey="Wu, Kailang" sort="Wu, Kailang" uniqKey="Wu K" first="Kailang" last="Wu">Kailang Wu</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Lang" sort="Chen, Lang" uniqKey="Chen L" first="Lang" last="Chen">Lang Chen</name>
</author>
<author>
<name sortKey="Peng, Guiqing" sort="Peng, Guiqing" uniqKey="Peng G" first="Guiqing" last="Peng">Guiqing Peng</name>
</author>
<author>
<name sortKey="Zhou, Wenbo" sort="Zhou, Wenbo" uniqKey="Zhou W" first="Wenbo" last="Zhou">Wenbo Zhou</name>
</author>
<author>
<name sortKey="Pennell, Christopher A" sort="Pennell, Christopher A" uniqKey="Pennell C" first="Christopher A" last="Pennell">Christopher A. Pennell</name>
</author>
<author>
<name sortKey="Mansky, Louis M" sort="Mansky, Louis M" uniqKey="Mansky L" first="Louis M" last="Mansky">Louis M. Mansky</name>
</author>
<author>
<name sortKey="Geraghty, Robert J" sort="Geraghty, Robert J" uniqKey="Geraghty R" first="Robert J" last="Geraghty">Robert J. Geraghty</name>
</author>
<author>
<name sortKey="Li, Fang" sort="Li, Fang" uniqKey="Li F" first="Fang" last="Li">Fang Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21411533</idno>
<idno type="pmid">21411533</idno>
<idno type="doi">10.1128/JVI.02274-10</idno>
<idno type="wicri:Area/PubMed/Corpus">001538</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001538</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.</title>
<author>
<name sortKey="Wu, Kailang" sort="Wu, Kailang" uniqKey="Wu K" first="Kailang" last="Wu">Kailang Wu</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Lang" sort="Chen, Lang" uniqKey="Chen L" first="Lang" last="Chen">Lang Chen</name>
</author>
<author>
<name sortKey="Peng, Guiqing" sort="Peng, Guiqing" uniqKey="Peng G" first="Guiqing" last="Peng">Guiqing Peng</name>
</author>
<author>
<name sortKey="Zhou, Wenbo" sort="Zhou, Wenbo" uniqKey="Zhou W" first="Wenbo" last="Zhou">Wenbo Zhou</name>
</author>
<author>
<name sortKey="Pennell, Christopher A" sort="Pennell, Christopher A" uniqKey="Pennell C" first="Christopher A" last="Pennell">Christopher A. Pennell</name>
</author>
<author>
<name sortKey="Mansky, Louis M" sort="Mansky, Louis M" uniqKey="Mansky L" first="Louis M" last="Mansky">Louis M. Mansky</name>
</author>
<author>
<name sortKey="Geraghty, Robert J" sort="Geraghty, Robert J" uniqKey="Geraghty R" first="Robert J" last="Geraghty">Robert J. Geraghty</name>
</author>
<author>
<name sortKey="Li, Fang" sort="Li, Fang" uniqKey="Li F" first="Fang" last="Li">Fang Li</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coronavirus NL63, Human (physiology)</term>
<term>DNA Mutational Analysis</term>
<term>Humans</term>
<term>Peptidyl-Dipeptidase A (genetics)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Protein Binding</term>
<term>Receptors, Virus (genetics)</term>
<term>Receptors, Virus (metabolism)</term>
<term>SARS Virus (physiology)</term>
<term>Transduction, Genetic</term>
<term>Virus Attachment</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coronavirus NL63, Human</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Mutational Analysis</term>
<term>Humans</term>
<term>Protein Binding</term>
<term>Transduction, Genetic</term>
<term>Virus Attachment</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21411533</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.</ArticleTitle>
<Pagination>
<MedlinePgn>5331-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.02274-10</ELocationID>
<Abstract>
<AbstractText>How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Kailang</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Lang</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peng</LastName>
<ForeName>Guiqing</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Wenbo</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pennell</LastName>
<ForeName>Christopher A</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mansky</LastName>
<ForeName>Louis M</ForeName>
<Initials>LM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Geraghty</LastName>
<ForeName>Robert J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Fang</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI089728</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AI089728</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058957" MajorTopicYN="N">Coronavirus NL63, Human</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004252" MajorTopicYN="N">DNA Mutational Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014161" MajorTopicYN="N">Transduction, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053585" MajorTopicYN="Y">Virus Attachment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21411533</ArticleId>
<ArticleId IdType="pii">JVI.02274-10</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.02274-10</ArticleId>
<ArticleId IdType="pmc">PMC3094985</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1999 Nov 19;286(5444):1579-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 May 11;292(5519):1102-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2001 Jun;11(3):364-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11406388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Jul;8(1):169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11511370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Mar;27(3):122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11893508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Nov 15;324(1):177-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12421567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15276-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 23;279(17):17996-8007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14754895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6212-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Jan;84(1):156-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3099292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1996 May;3(5):427-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8612072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Nov 1;87(3):427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8898196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Feb 28;275(5304):1320-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9036860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jun 18;393(6686):648-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9641677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 Jun 20;246(1):179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Nov 26;344(3):781-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15533445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2430-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Apr 20;24(8):1634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):6794-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Sep 29;362(4):861-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16949097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:229-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2008 Apr;89(Pt 4):1015-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18343844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jul;82(14):6984-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18448527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9953-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18632560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19970-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Apr;17(4):438-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20208545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2010 Oct;155(10):1563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20567988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jun 5;280(5369):1618-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9616127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001538 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001538 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21411533
   |texte=   A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21411533" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021