Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells.

Identifieur interne : 001501 ( PubMed/Corpus ); précédent : 001500; suivant : 001502

The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells.

Auteurs : Li Li ; Li Wang ; Ruijing Xiao ; Guoguo Zhu ; Yan Li ; Changxuan Liu ; Ru Yang ; Zhiqing Tang ; Jie Li ; Wei Huang ; Lang Chen ; Xiaoling Zheng ; Yuling He ; Jinquan Tan

Source :

RBID : pubmed:21729006

English descriptors

Abstract

The ability of human cells to defend against viruses originating from distant species has long been ignored. Owing to the pressure of natural evolution and human exploration, some of these viruses may be able to invade human beings. If their 'fresh' host had no defences, the viruses could cause a serious pandemic, as seen with HIV, SARS (severe acute respiratory syndrome) and avian influenza virus that originated from chimpanzees, the common palm civet and birds, respectively. It is unknown whether the human immune system could tolerate invasion with a plant virus. To model such an alien virus invasion, we chose TMV (tobacco mosaic virus) and used human epithelial carcinoma cells (HeLa cells) as its 'fresh' host. We established a reliable system for transfecting TMV-RNA into HeLa cells and found that TMV-RNA triggered autophagy in HeLa cells as shown by the appearance of autophagic vacuoles, the conversion of LC3-I (light chain protein 3-I) to LC3-II, the up-regulated expression of Beclin1 and the accumulation of TMV protein on autophagosomal membranes. We observed suspected TMV virions in HeLa cells by TEM (transmission electron microscopy). Furthermore, we found that TMV-RNA was translated into CP (coat protein) in the ER (endoplasmic reticulum) and that TMV-positive RNA translocated from the cytoplasm to the nucleolus. Finally, we detected greatly increased expression of GRP78 (78 kDa glucose-regulated protein), a typical marker of ERS (ER stress) and found that the formation of autophagosomes was closely related to the expanded ER membrane. Taken together, our data indicate that HeLa cells used ERS and ERS-related autophagy to defend against TMV-RNA.

DOI: 10.1042/BSR20110069
PubMed: 21729006

Links to Exploration step

pubmed:21729006

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells.</title>
<author>
<name sortKey="Li, Li" sort="Li, Li" uniqKey="Li L" first="Li" last="Li">Li Li</name>
<affiliation>
<nlm:affiliation>Laboratory of Allergy and Clinical Immunology, Department of Immunology, Institute of Allergy and Immune-related Diseases, Centre for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
</author>
<author>
<name sortKey="Xiao, Ruijing" sort="Xiao, Ruijing" uniqKey="Xiao R" first="Ruijing" last="Xiao">Ruijing Xiao</name>
</author>
<author>
<name sortKey="Zhu, Guoguo" sort="Zhu, Guoguo" uniqKey="Zhu G" first="Guoguo" last="Zhu">Guoguo Zhu</name>
</author>
<author>
<name sortKey="Li, Yan" sort="Li, Yan" uniqKey="Li Y" first="Yan" last="Li">Yan Li</name>
</author>
<author>
<name sortKey="Liu, Changxuan" sort="Liu, Changxuan" uniqKey="Liu C" first="Changxuan" last="Liu">Changxuan Liu</name>
</author>
<author>
<name sortKey="Yang, Ru" sort="Yang, Ru" uniqKey="Yang R" first="Ru" last="Yang">Ru Yang</name>
</author>
<author>
<name sortKey="Tang, Zhiqing" sort="Tang, Zhiqing" uniqKey="Tang Z" first="Zhiqing" last="Tang">Zhiqing Tang</name>
</author>
<author>
<name sortKey="Li, Jie" sort="Li, Jie" uniqKey="Li J" first="Jie" last="Li">Jie Li</name>
</author>
<author>
<name sortKey="Huang, Wei" sort="Huang, Wei" uniqKey="Huang W" first="Wei" last="Huang">Wei Huang</name>
</author>
<author>
<name sortKey="Chen, Lang" sort="Chen, Lang" uniqKey="Chen L" first="Lang" last="Chen">Lang Chen</name>
</author>
<author>
<name sortKey="Zheng, Xiaoling" sort="Zheng, Xiaoling" uniqKey="Zheng X" first="Xiaoling" last="Zheng">Xiaoling Zheng</name>
</author>
<author>
<name sortKey="He, Yuling" sort="He, Yuling" uniqKey="He Y" first="Yuling" last="He">Yuling He</name>
</author>
<author>
<name sortKey="Tan, Jinquan" sort="Tan, Jinquan" uniqKey="Tan J" first="Jinquan" last="Tan">Jinquan Tan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:21729006</idno>
<idno type="pmid">21729006</idno>
<idno type="doi">10.1042/BSR20110069</idno>
<idno type="wicri:Area/PubMed/Corpus">001501</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001501</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells.</title>
<author>
<name sortKey="Li, Li" sort="Li, Li" uniqKey="Li L" first="Li" last="Li">Li Li</name>
<affiliation>
<nlm:affiliation>Laboratory of Allergy and Clinical Immunology, Department of Immunology, Institute of Allergy and Immune-related Diseases, Centre for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Li" sort="Wang, Li" uniqKey="Wang L" first="Li" last="Wang">Li Wang</name>
</author>
<author>
<name sortKey="Xiao, Ruijing" sort="Xiao, Ruijing" uniqKey="Xiao R" first="Ruijing" last="Xiao">Ruijing Xiao</name>
</author>
<author>
<name sortKey="Zhu, Guoguo" sort="Zhu, Guoguo" uniqKey="Zhu G" first="Guoguo" last="Zhu">Guoguo Zhu</name>
</author>
<author>
<name sortKey="Li, Yan" sort="Li, Yan" uniqKey="Li Y" first="Yan" last="Li">Yan Li</name>
</author>
<author>
<name sortKey="Liu, Changxuan" sort="Liu, Changxuan" uniqKey="Liu C" first="Changxuan" last="Liu">Changxuan Liu</name>
</author>
<author>
<name sortKey="Yang, Ru" sort="Yang, Ru" uniqKey="Yang R" first="Ru" last="Yang">Ru Yang</name>
</author>
<author>
<name sortKey="Tang, Zhiqing" sort="Tang, Zhiqing" uniqKey="Tang Z" first="Zhiqing" last="Tang">Zhiqing Tang</name>
</author>
<author>
<name sortKey="Li, Jie" sort="Li, Jie" uniqKey="Li J" first="Jie" last="Li">Jie Li</name>
</author>
<author>
<name sortKey="Huang, Wei" sort="Huang, Wei" uniqKey="Huang W" first="Wei" last="Huang">Wei Huang</name>
</author>
<author>
<name sortKey="Chen, Lang" sort="Chen, Lang" uniqKey="Chen L" first="Lang" last="Chen">Lang Chen</name>
</author>
<author>
<name sortKey="Zheng, Xiaoling" sort="Zheng, Xiaoling" uniqKey="Zheng X" first="Xiaoling" last="Zheng">Xiaoling Zheng</name>
</author>
<author>
<name sortKey="He, Yuling" sort="He, Yuling" uniqKey="He Y" first="Yuling" last="He">Yuling He</name>
</author>
<author>
<name sortKey="Tan, Jinquan" sort="Tan, Jinquan" uniqKey="Tan J" first="Jinquan" last="Tan">Jinquan Tan</name>
</author>
</analytic>
<series>
<title level="j">Bioscience reports</title>
<idno type="eISSN">1573-4935</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy</term>
<term>Endoplasmic Reticulum Stress</term>
<term>HeLa Cells (cytology)</term>
<term>HeLa Cells (virology)</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>RNA, Viral (metabolism)</term>
<term>Tobacco Mosaic Virus (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>HeLa Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Tobacco Mosaic Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>HeLa Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autophagy</term>
<term>Endoplasmic Reticulum Stress</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ability of human cells to defend against viruses originating from distant species has long been ignored. Owing to the pressure of natural evolution and human exploration, some of these viruses may be able to invade human beings. If their 'fresh' host had no defences, the viruses could cause a serious pandemic, as seen with HIV, SARS (severe acute respiratory syndrome) and avian influenza virus that originated from chimpanzees, the common palm civet and birds, respectively. It is unknown whether the human immune system could tolerate invasion with a plant virus. To model such an alien virus invasion, we chose TMV (tobacco mosaic virus) and used human epithelial carcinoma cells (HeLa cells) as its 'fresh' host. We established a reliable system for transfecting TMV-RNA into HeLa cells and found that TMV-RNA triggered autophagy in HeLa cells as shown by the appearance of autophagic vacuoles, the conversion of LC3-I (light chain protein 3-I) to LC3-II, the up-regulated expression of Beclin1 and the accumulation of TMV protein on autophagosomal membranes. We observed suspected TMV virions in HeLa cells by TEM (transmission electron microscopy). Furthermore, we found that TMV-RNA was translated into CP (coat protein) in the ER (endoplasmic reticulum) and that TMV-positive RNA translocated from the cytoplasm to the nucleolus. Finally, we detected greatly increased expression of GRP78 (78 kDa glucose-regulated protein), a typical marker of ERS (ER stress) and found that the formation of autophagosomes was closely related to the expanded ER membrane. Taken together, our data indicate that HeLa cells used ERS and ERS-related autophagy to defend against TMV-RNA.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21729006</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1573-4935</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Bioscience reports</Title>
<ISOAbbreviation>Biosci. Rep.</ISOAbbreviation>
</Journal>
<ArticleTitle>The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells.</ArticleTitle>
<Pagination>
<MedlinePgn>171-86</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1042/BSR20110069</ELocationID>
<Abstract>
<AbstractText>The ability of human cells to defend against viruses originating from distant species has long been ignored. Owing to the pressure of natural evolution and human exploration, some of these viruses may be able to invade human beings. If their 'fresh' host had no defences, the viruses could cause a serious pandemic, as seen with HIV, SARS (severe acute respiratory syndrome) and avian influenza virus that originated from chimpanzees, the common palm civet and birds, respectively. It is unknown whether the human immune system could tolerate invasion with a plant virus. To model such an alien virus invasion, we chose TMV (tobacco mosaic virus) and used human epithelial carcinoma cells (HeLa cells) as its 'fresh' host. We established a reliable system for transfecting TMV-RNA into HeLa cells and found that TMV-RNA triggered autophagy in HeLa cells as shown by the appearance of autophagic vacuoles, the conversion of LC3-I (light chain protein 3-I) to LC3-II, the up-regulated expression of Beclin1 and the accumulation of TMV protein on autophagosomal membranes. We observed suspected TMV virions in HeLa cells by TEM (transmission electron microscopy). Furthermore, we found that TMV-RNA was translated into CP (coat protein) in the ER (endoplasmic reticulum) and that TMV-positive RNA translocated from the cytoplasm to the nucleolus. Finally, we detected greatly increased expression of GRP78 (78 kDa glucose-regulated protein), a typical marker of ERS (ER stress) and found that the formation of autophagosomes was closely related to the expanded ER membrane. Taken together, our data indicate that HeLa cells used ERS and ERS-related autophagy to defend against TMV-RNA.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Allergy and Clinical Immunology, Department of Immunology, Institute of Allergy and Immune-related Diseases, Centre for Medical Research, Wuhan University School of Medicine, Wuhan, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Ruijing</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Guoguo</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Changxuan</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Ru</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Zhiqing</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Lang</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zheng</LastName>
<ForeName>Xiaoling</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Yuling</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tan</LastName>
<ForeName>Jinquan</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biosci Rep</MedlineTA>
<NlmUniqueID>8102797</NlmUniqueID>
<ISSNLinking>0144-8463</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059865" MajorTopicYN="Y">Endoplasmic Reticulum Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014027" MajorTopicYN="N">Tobacco Mosaic Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21729006</ArticleId>
<ArticleId IdType="pii">BSR20110069</ArticleId>
<ArticleId IdType="doi">10.1042/BSR20110069</ArticleId>
<ArticleId IdType="pmc">PMC3225954</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2007;315:51-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 28;451(7182):1069-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1110-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18337753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2008 Sep;15(9):1460-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18551133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Aug 25;182(4):685-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18725538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2008 Sep;72(3):457-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18772285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Dec;26(24):9220-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17030611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Struct Funct. 2006;31(2):145-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17146146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Nov;4(12):e423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17132049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Mar 9;315(5817):1398-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17272685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Mar 9;315(5817):1376-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17347432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 May-Jun;3(3):285-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Jul-Aug;3(4):354-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17404496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jul 26;25(30):5637-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17126960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2007 Sep;14(9):1576-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17612585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gynecol Oncol. 2009 Mar;112(3):623-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19147209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2009 Dec;162(1-2):163-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19665483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Avian Dis. 2010 Mar;54(1 Suppl):466-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20521681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2010 Sep;177(3):1377-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2011 Mar;2011(3):prot5583</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21363947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2009 Jan;227(1):75-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19120477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):672-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Nov 1;19(21):5720-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11060023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 May 11;292(5519):1102-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Recenti Prog Med. 2003 Jul-Aug;94(7-8):284-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12868233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2003 Dec;112(12):1809-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14638851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1415-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14745003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10136-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1974 Sep;78(1):383-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4474972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1975 Oct;2(10):1719-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1187342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1982 Oct;62 (Pt 2):343-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7142974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Aug;83(15):5602-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3016708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1990 Jun;110(6):1923-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2351689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1990 Jun;110(6):1935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2161853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 1990;38:307-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2220472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Oct 5;266(28):18995-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1918014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Feb;186(2):359-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1733093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1993 Aug;5(4):589-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7903041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 1993;28(5):375-430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8269709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Mar;73(3):2016-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9971782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Feb 4;397(6718):436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9989410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1999 Mar 29;354(1383):613-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1999 Mar 29;354(1383):659-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 May;3(5):e156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15884975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 23;122(6):927-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2006 Mar;13(3):393-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2006 May;12(5):775-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16540694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2006 Sep;7(9):880-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16953201</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001501 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001501 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21729006
   |texte=   The invasion of tobacco mosaic virus RNA induces endoplasmic reticulum stress-related autophagy in HeLa cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21729006" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021