Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway.

Identifieur interne : 001492 ( PubMed/Corpus ); précédent : 001491; suivant : 001493

Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway.

Auteurs : Martial Jaume ; Ming S. Yip ; Chung Y. Cheung ; Hiu L. Leung ; Ping H. Li ; Francois Kien ; Isabelle Dutry ; Benoît Callendret ; Nicolas Escriou ; Ralf Altmeyer ; Beatrice Nal ; Marc Daëron ; Roberto Bruzzone ; J S Malik Peiris

Source :

RBID : pubmed:21775467

English descriptors

Abstract

Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.

DOI: 10.1128/JVI.00671-11
PubMed: 21775467

Links to Exploration step

pubmed:21775467

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway.</title>
<author>
<name sortKey="Jaume, Martial" sort="Jaume, Martial" uniqKey="Jaume M" first="Martial" last="Jaume">Martial Jaume</name>
<affiliation>
<nlm:affiliation>HKU-Pasteur Research Centre, Dexter H. C. Man Building, 8 Sassoon Road, Pokfulam, Hong Kong SAR, China. breizh@hku.hk</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yip, Ming S" sort="Yip, Ming S" uniqKey="Yip M" first="Ming S" last="Yip">Ming S. Yip</name>
</author>
<author>
<name sortKey="Cheung, Chung Y" sort="Cheung, Chung Y" uniqKey="Cheung C" first="Chung Y" last="Cheung">Chung Y. Cheung</name>
</author>
<author>
<name sortKey="Leung, Hiu L" sort="Leung, Hiu L" uniqKey="Leung H" first="Hiu L" last="Leung">Hiu L. Leung</name>
</author>
<author>
<name sortKey="Li, Ping H" sort="Li, Ping H" uniqKey="Li P" first="Ping H" last="Li">Ping H. Li</name>
</author>
<author>
<name sortKey="Kien, Francois" sort="Kien, Francois" uniqKey="Kien F" first="Francois" last="Kien">Francois Kien</name>
</author>
<author>
<name sortKey="Dutry, Isabelle" sort="Dutry, Isabelle" uniqKey="Dutry I" first="Isabelle" last="Dutry">Isabelle Dutry</name>
</author>
<author>
<name sortKey="Callendret, Benoit" sort="Callendret, Benoit" uniqKey="Callendret B" first="Benoît" last="Callendret">Benoît Callendret</name>
</author>
<author>
<name sortKey="Escriou, Nicolas" sort="Escriou, Nicolas" uniqKey="Escriou N" first="Nicolas" last="Escriou">Nicolas Escriou</name>
</author>
<author>
<name sortKey="Altmeyer, Ralf" sort="Altmeyer, Ralf" uniqKey="Altmeyer R" first="Ralf" last="Altmeyer">Ralf Altmeyer</name>
</author>
<author>
<name sortKey="Nal, Beatrice" sort="Nal, Beatrice" uniqKey="Nal B" first="Beatrice" last="Nal">Beatrice Nal</name>
</author>
<author>
<name sortKey="Daeron, Marc" sort="Daeron, Marc" uniqKey="Daeron M" first="Marc" last="Daëron">Marc Daëron</name>
</author>
<author>
<name sortKey="Bruzzone, Roberto" sort="Bruzzone, Roberto" uniqKey="Bruzzone R" first="Roberto" last="Bruzzone">Roberto Bruzzone</name>
</author>
<author>
<name sortKey="Peiris, J S Malik" sort="Peiris, J S Malik" uniqKey="Peiris J" first="J S Malik" last="Peiris">J S Malik Peiris</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21775467</idno>
<idno type="pmid">21775467</idno>
<idno type="doi">10.1128/JVI.00671-11</idno>
<idno type="wicri:Area/PubMed/Corpus">001492</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001492</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway.</title>
<author>
<name sortKey="Jaume, Martial" sort="Jaume, Martial" uniqKey="Jaume M" first="Martial" last="Jaume">Martial Jaume</name>
<affiliation>
<nlm:affiliation>HKU-Pasteur Research Centre, Dexter H. C. Man Building, 8 Sassoon Road, Pokfulam, Hong Kong SAR, China. breizh@hku.hk</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yip, Ming S" sort="Yip, Ming S" uniqKey="Yip M" first="Ming S" last="Yip">Ming S. Yip</name>
</author>
<author>
<name sortKey="Cheung, Chung Y" sort="Cheung, Chung Y" uniqKey="Cheung C" first="Chung Y" last="Cheung">Chung Y. Cheung</name>
</author>
<author>
<name sortKey="Leung, Hiu L" sort="Leung, Hiu L" uniqKey="Leung H" first="Hiu L" last="Leung">Hiu L. Leung</name>
</author>
<author>
<name sortKey="Li, Ping H" sort="Li, Ping H" uniqKey="Li P" first="Ping H" last="Li">Ping H. Li</name>
</author>
<author>
<name sortKey="Kien, Francois" sort="Kien, Francois" uniqKey="Kien F" first="Francois" last="Kien">Francois Kien</name>
</author>
<author>
<name sortKey="Dutry, Isabelle" sort="Dutry, Isabelle" uniqKey="Dutry I" first="Isabelle" last="Dutry">Isabelle Dutry</name>
</author>
<author>
<name sortKey="Callendret, Benoit" sort="Callendret, Benoit" uniqKey="Callendret B" first="Benoît" last="Callendret">Benoît Callendret</name>
</author>
<author>
<name sortKey="Escriou, Nicolas" sort="Escriou, Nicolas" uniqKey="Escriou N" first="Nicolas" last="Escriou">Nicolas Escriou</name>
</author>
<author>
<name sortKey="Altmeyer, Ralf" sort="Altmeyer, Ralf" uniqKey="Altmeyer R" first="Ralf" last="Altmeyer">Ralf Altmeyer</name>
</author>
<author>
<name sortKey="Nal, Beatrice" sort="Nal, Beatrice" uniqKey="Nal B" first="Beatrice" last="Nal">Beatrice Nal</name>
</author>
<author>
<name sortKey="Daeron, Marc" sort="Daeron, Marc" uniqKey="Daeron M" first="Marc" last="Daëron">Marc Daëron</name>
</author>
<author>
<name sortKey="Bruzzone, Roberto" sort="Bruzzone, Roberto" uniqKey="Bruzzone R" first="Roberto" last="Bruzzone">Roberto Bruzzone</name>
</author>
<author>
<name sortKey="Peiris, J S Malik" sort="Peiris, J S Malik" uniqKey="Peiris J" first="J S Malik" last="Peiris">J S Malik Peiris</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antibodies, Neutralizing (metabolism)</term>
<term>Antibodies, Viral (metabolism)</term>
<term>Antibody-Dependent Enhancement</term>
<term>Cells, Cultured</term>
<term>Chlorocebus aethiops</term>
<term>Cysteine Proteases</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Lymphocytes (virology)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Receptors, IgG (metabolism)</term>
<term>SARS Virus (immunology)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antibodies, Neutralizing</term>
<term>Antibodies, Viral</term>
<term>Membrane Glycoproteins</term>
<term>Receptors, IgG</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Lymphocytes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Antibody-Dependent Enhancement</term>
<term>Cells, Cultured</term>
<term>Chlorocebus aethiops</term>
<term>Cysteine Proteases</term>
<term>Humans</term>
<term>Hydrogen-Ion Concentration</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21775467</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2011</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>10582-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00671-11</ELocationID>
<Abstract>
<AbstractText>Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jaume</LastName>
<ForeName>Martial</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>HKU-Pasteur Research Centre, Dexter H. C. Man Building, 8 Sassoon Road, Pokfulam, Hong Kong SAR, China. breizh@hku.hk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yip</LastName>
<ForeName>Ming S</ForeName>
<Initials>MS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cheung</LastName>
<ForeName>Chung Y</ForeName>
<Initials>CY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leung</LastName>
<ForeName>Hiu L</ForeName>
<Initials>HL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Ping H</ForeName>
<Initials>PH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kien</LastName>
<ForeName>Francois</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dutry</LastName>
<ForeName>Isabelle</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Callendret</LastName>
<ForeName>Benoît</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Escriou</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Altmeyer</LastName>
<ForeName>Ralf</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nal</LastName>
<ForeName>Beatrice</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Daëron</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bruzzone</LastName>
<ForeName>Roberto</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peiris</LastName>
<ForeName>J S Malik</ForeName>
<Initials>JS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D057134">Antibodies, Neutralizing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017452">Receptors, IgG</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D057056">Cysteine Proteases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057134" MajorTopicYN="N">Antibodies, Neutralizing</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019067" MajorTopicYN="Y">Antibody-Dependent Enhancement</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057056" MajorTopicYN="N">Cysteine Proteases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008214" MajorTopicYN="N">Lymphocytes</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017452" MajorTopicYN="N">Receptors, IgG</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>11</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21775467</ArticleId>
<ArticleId IdType="pii">JVI.00671-11</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00671-11</ArticleId>
<ArticleId IdType="pmc">PMC3187504</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 May;79(9):5705-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15827185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(12):7819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15919935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2005 Jul;86(Pt 7):1921-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2005 Aug 1;202(3):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2005 Oct 1;106(7):2366-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tissue Antigens. 2005 Oct;66(4):291-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16185324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(22):14122-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2006 Jan;78(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2005 Nov;11(11):1730-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16318725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Jan;4(1):67-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2006 Feb;35(2):179-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 10;281(6):3198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2006 Nov 1;177(9):6291-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17056559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jan 8;25(4):729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17049691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2007 Jan 31;119(2-4):121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2007;25:443-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17243893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2007 May;39(1):27-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17409017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Jul 5;363(2):288-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17331558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Jul 20;364(1):64-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17382365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Apr;82(7):3220-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):45-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Jan 22;27(4):505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19022319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Mar;7(3):226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19198616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 May;5(5):e1000428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19436709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2009 Jul;8(7):887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19538115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2009 Nov;41(11):2232-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19398035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2009 Dec;30(12):574-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19864182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2010 Feb;22(1):41-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20061127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2010 Aug;13(4):503-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20538506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Dec 5;278(1):86-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11112484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2001;19:275-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11244038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2001;260:145-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11443872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2001 Nov 1;184(9):1098-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(22):11440-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12388705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Dec 4;532(1-2):107-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12459472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2003 Apr;24(4):165-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12697441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2003 Dec;28(3):239-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2003 Nov-Dec;13(6):387-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14625886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Immunol. 2004 Apr;136(1):95-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4240-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 1;428(6982):561-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(12):6134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15163706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9804-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15210961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2004 Jul;42(7):3196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15243082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12672-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1986 Jan;57(1):328-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2867230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Dec 14;342(6251):803-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2532305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1990 Jan;174(1):87-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Mar;64(3):1407-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1990 Jul 1;172(1):19-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2141627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1991 Oct 15;147(8):2652-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1833456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Feb;66(2):956-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1309922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Nov;66(11):6695-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1383568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 1993 Nov;54(5):504-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8228629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1996 Mar 1;97(5):1348-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1996 May 1;183(5):2227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8642332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1997;15:203-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9143687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1997 Apr 5;815:282-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9186665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vet Med Sci. 1998 Jan;60(1):49-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9492360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Vet Res. 1998 Aug;59(8):1002-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9706204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2005 Jan;107(1):93-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15567038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2005 Feb;75(2):185-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15602737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jan 18;102(3):797-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15642942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol (Basel). 2004;119:129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15742624</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001492 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001492 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21775467
   |texte=   Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21775467" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021