Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity.

Identifieur interne : 001480 ( PubMed/Corpus ); précédent : 001479; suivant : 001481

Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity.

Auteurs : Kazuya Shirato ; Madoka Maejima ; Shutoku Matsuyama ; Makoto Ujike ; Ayako Miyazaki ; Natsumi Takeyama ; Hidetoshi Ikeda ; Fumihiro Taguchi

Source :

RBID : pubmed:21840351

English descriptors

Abstract

Murine-adapted porcine epidemic diarrhea virus (PEDV), MK-p10, shows high neurovirulence and increased fusion activity compared with a non-adapted MK strain. MK-p10 S protein had four mutations relative to the original virus S, and one of these (H→R at position 1381, H1381R) in the cytoplasmic tail (CT) was suggested to be responsible for the increased fusion activity. To explore this, we examined fusion activity using recombinant S proteins. We expressed and compared the fusion activity of MK-p10 S, S with the H1381R mutation, S with the three other mutations that were not thought to be involved in high fusion activity, and the original S protein. The MK-p10 and MK-H1381R S proteins induced larger cell fusions than others. We also examined the distribution of these S proteins; the MK-p10 and MK-H1381R S proteins were transported onto the cell surface more efficiently than others. These findings suggest that the H1381R mutation is responsible for enhanced fusion activity, which may be attributed to the efficient transfer of S onto the cell surface. H1381 is a component of the KxHxx motif in the CT region, which is a retrieval signal of the S protein for the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). Loss of this motif could allow for the efficient transfer of S proteins from ERGIC onto the cell surface and subsequent increased fusion activity.

DOI: 10.1016/j.virusres.2011.07.019
PubMed: 21840351

Links to Exploration step

pubmed:21840351

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity.</title>
<author>
<name sortKey="Shirato, Kazuya" sort="Shirato, Kazuya" uniqKey="Shirato K" first="Kazuya" last="Shirato">Kazuya Shirato</name>
<affiliation>
<nlm:affiliation>Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maejima, Madoka" sort="Maejima, Madoka" uniqKey="Maejima M" first="Madoka" last="Maejima">Madoka Maejima</name>
</author>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
</author>
<author>
<name sortKey="Ujike, Makoto" sort="Ujike, Makoto" uniqKey="Ujike M" first="Makoto" last="Ujike">Makoto Ujike</name>
</author>
<author>
<name sortKey="Miyazaki, Ayako" sort="Miyazaki, Ayako" uniqKey="Miyazaki A" first="Ayako" last="Miyazaki">Ayako Miyazaki</name>
</author>
<author>
<name sortKey="Takeyama, Natsumi" sort="Takeyama, Natsumi" uniqKey="Takeyama N" first="Natsumi" last="Takeyama">Natsumi Takeyama</name>
</author>
<author>
<name sortKey="Ikeda, Hidetoshi" sort="Ikeda, Hidetoshi" uniqKey="Ikeda H" first="Hidetoshi" last="Ikeda">Hidetoshi Ikeda</name>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21840351</idno>
<idno type="pmid">21840351</idno>
<idno type="doi">10.1016/j.virusres.2011.07.019</idno>
<idno type="wicri:Area/PubMed/Corpus">001480</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001480</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity.</title>
<author>
<name sortKey="Shirato, Kazuya" sort="Shirato, Kazuya" uniqKey="Shirato K" first="Kazuya" last="Shirato">Kazuya Shirato</name>
<affiliation>
<nlm:affiliation>Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maejima, Madoka" sort="Maejima, Madoka" uniqKey="Maejima M" first="Madoka" last="Maejima">Madoka Maejima</name>
</author>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
</author>
<author>
<name sortKey="Ujike, Makoto" sort="Ujike, Makoto" uniqKey="Ujike M" first="Makoto" last="Ujike">Makoto Ujike</name>
</author>
<author>
<name sortKey="Miyazaki, Ayako" sort="Miyazaki, Ayako" uniqKey="Miyazaki A" first="Ayako" last="Miyazaki">Ayako Miyazaki</name>
</author>
<author>
<name sortKey="Takeyama, Natsumi" sort="Takeyama, Natsumi" uniqKey="Takeyama N" first="Natsumi" last="Takeyama">Natsumi Takeyama</name>
</author>
<author>
<name sortKey="Ikeda, Hidetoshi" sort="Ikeda, Hidetoshi" uniqKey="Ikeda H" first="Hidetoshi" last="Ikeda">Hidetoshi Ikeda</name>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
</author>
</analytic>
<series>
<title level="j">Virus research</title>
<idno type="eISSN">1872-7492</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Coronavirus Infections (virology)</term>
<term>Cytoplasm (virology)</term>
<term>Membrane Glycoproteins (chemistry)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (metabolism)</term>
<term>Molecular Sequence Data</term>
<term>Mutation, Missense</term>
<term>Porcine epidemic diarrhea virus (genetics)</term>
<term>Porcine epidemic diarrhea virus (physiology)</term>
<term>Protein Sorting Signals</term>
<term>Protein Transport</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Swine</term>
<term>Swine Diseases (virology)</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Porcine epidemic diarrhea virus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Porcine epidemic diarrhea virus</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Cytoplasm</term>
<term>Swine Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Line</term>
<term>Molecular Sequence Data</term>
<term>Mutation, Missense</term>
<term>Protein Sorting Signals</term>
<term>Protein Transport</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Swine</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Murine-adapted porcine epidemic diarrhea virus (PEDV), MK-p10, shows high neurovirulence and increased fusion activity compared with a non-adapted MK strain. MK-p10 S protein had four mutations relative to the original virus S, and one of these (H→R at position 1381, H1381R) in the cytoplasmic tail (CT) was suggested to be responsible for the increased fusion activity. To explore this, we examined fusion activity using recombinant S proteins. We expressed and compared the fusion activity of MK-p10 S, S with the H1381R mutation, S with the three other mutations that were not thought to be involved in high fusion activity, and the original S protein. The MK-p10 and MK-H1381R S proteins induced larger cell fusions than others. We also examined the distribution of these S proteins; the MK-p10 and MK-H1381R S proteins were transported onto the cell surface more efficiently than others. These findings suggest that the H1381R mutation is responsible for enhanced fusion activity, which may be attributed to the efficient transfer of S onto the cell surface. H1381 is a component of the KxHxx motif in the CT region, which is a retrieval signal of the S protein for the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). Loss of this motif could allow for the efficient transfer of S proteins from ERGIC onto the cell surface and subsequent increased fusion activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21840351</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>01</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-7492</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>161</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Virus research</Title>
<ISOAbbreviation>Virus Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity.</ArticleTitle>
<Pagination>
<MedlinePgn>188-93</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.virusres.2011.07.019</ELocationID>
<Abstract>
<AbstractText>Murine-adapted porcine epidemic diarrhea virus (PEDV), MK-p10, shows high neurovirulence and increased fusion activity compared with a non-adapted MK strain. MK-p10 S protein had four mutations relative to the original virus S, and one of these (H→R at position 1381, H1381R) in the cytoplasmic tail (CT) was suggested to be responsible for the increased fusion activity. To explore this, we examined fusion activity using recombinant S proteins. We expressed and compared the fusion activity of MK-p10 S, S with the H1381R mutation, S with the three other mutations that were not thought to be involved in high fusion activity, and the original S protein. The MK-p10 and MK-H1381R S proteins induced larger cell fusions than others. We also examined the distribution of these S proteins; the MK-p10 and MK-H1381R S proteins were transported onto the cell surface more efficiently than others. These findings suggest that the H1381R mutation is responsible for enhanced fusion activity, which may be attributed to the efficient transfer of S onto the cell surface. H1381 is a component of the KxHxx motif in the CT region, which is a retrieval signal of the S protein for the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). Loss of this motif could allow for the efficient transfer of S proteins from ERGIC onto the cell surface and subsequent increased fusion activity.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shirato</LastName>
<ForeName>Kazuya</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Maejima</LastName>
<ForeName>Madoka</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matsuyama</LastName>
<ForeName>Shutoku</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ujike</LastName>
<ForeName>Makoto</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miyazaki</LastName>
<ForeName>Ayako</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Takeyama</LastName>
<ForeName>Natsumi</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ikeda</LastName>
<ForeName>Hidetoshi</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Taguchi</LastName>
<ForeName>Fumihiro</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Virus Res</MedlineTA>
<NlmUniqueID>8410979</NlmUniqueID>
<ISSNLinking>0168-1702</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021382">Protein Sorting Signals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020125" MajorTopicYN="Y">Mutation, Missense</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053485" MajorTopicYN="N">Porcine epidemic diarrhea virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021382" MajorTopicYN="Y">Protein Sorting Signals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013553" MajorTopicYN="N">Swine Diseases</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>07</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>1</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21840351</ArticleId>
<ArticleId IdType="pii">S0168-1702(11)00283-8</ArticleId>
<ArticleId IdType="doi">10.1016/j.virusres.2011.07.019</ArticleId>
<ArticleId IdType="pmc">PMC7114372</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11985-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140989</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 May 14;279(20):20836-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996844</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Cell Biol. 1993 Sep;122(6):1185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8397214</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Mar;82(6):2883-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199653</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562527</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Mar;81(5):2418-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17166901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Feb;80(3):1302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415007</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1988 Aug;165(2):367-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2841792</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Dec;77(23):12807-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14610202</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2000 Dec;81(Pt 12):2867-2871</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086117</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 May;74(9):4319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756047</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2005 Jul 13;2:54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16014172</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2005 Oct 25;341(2):215-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2005 Jan 25;44(3):947-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15654751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2002 Mar 30;295(1):160-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12033774</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 1978;58(3):243-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">83132</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2005 Aug;86(Pt 8):2269-2274</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16033974</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2000 Mar 30;269(1):212-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725213</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43661-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304515</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 2010 Dec;155(12):1989-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20827493</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jul;80(14):6794-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809285</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Aug;77(16):8801-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12885899</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Nov;83(21):11133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Aug;85(15):7872-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613395</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001480 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001480 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21840351
   |texte=   Mutation in the cytoplasmic retrieval signal of porcine epidemic diarrhea virus spike (S) protein is responsible for enhanced fusion activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21840351" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021