Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of SARS and NL63 papain-like protease binding sites and binding site dynamics: inhibitor design implications.

Identifieur interne : 001460 ( PubMed/Corpus ); précédent : 001459; suivant : 001461

Comparison of SARS and NL63 papain-like protease binding sites and binding site dynamics: inhibitor design implications.

Auteurs : Rima Chaudhuri ; Sishi Tang ; Guijun Zhao ; Hui Lu ; David A. Case ; Michael E. Johnson

Source :

RBID : pubmed:22004941

English descriptors

Abstract

The human severe acute respiratory syndrome coronavirus (SARS-CoV) and the NL63 coronaviruses are human respiratory pathogens for which no effective antiviral treatment exists. The papain-like cysteine proteases encoded by the coronavirus (SARS-CoV: PLpro; NL63: PLP1 and PLP2) represent potential targets for antiviral drug development. Three recent inhibitor-bound PLpro structures highlight the role of an extremely flexible six-residue loop in inhibitor binding. The high binding site plasticity is a major challenge in computational drug discovery/design efforts. From conventional molecular dynamics and accelerated molecular dynamics (aMD) simulations, we find that with conventional molecular dynamics simulation, PLpro translationally samples the open and closed conformation of BL2 loop on a picosecond-nanosecond timescale but does not reproduce the peptide bond inversion between loop residues Tyr269 and Gln270 that is observed on inhibitor GRL0617 binding. Only aMD simulation, starting from the closed loop conformation, reproduced the 180° ϕ-ψ dihedral rotation back to the open loop state. The Tyr-Gln peptide bond inversion appears to involve a progressive conformational change of the full loop, starting at one side, and progressing to the other. We used the SARS-CoV apo X-ray structure to develop a model of the NL63-PLP2 catalytic site. Superimposition of the PLP2 model on the PLpro X-ray structure identifies binding site residues in PLP2 that contribute to the distinct substrate cleavage site specificities between the two proteases. The topological and electrostatic differences between the two protease binding sites also help explain the selectivity of non-covalent PLpro inhibitors.

DOI: 10.1016/j.jmb.2011.09.030
PubMed: 22004941

Links to Exploration step

pubmed:22004941

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of SARS and NL63 papain-like protease binding sites and binding site dynamics: inhibitor design implications.</title>
<author>
<name sortKey="Chaudhuri, Rima" sort="Chaudhuri, Rima" uniqKey="Chaudhuri R" first="Rima" last="Chaudhuri">Rima Chaudhuri</name>
<affiliation>
<nlm:affiliation>Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Sishi" sort="Tang, Sishi" uniqKey="Tang S" first="Sishi" last="Tang">Sishi Tang</name>
</author>
<author>
<name sortKey="Zhao, Guijun" sort="Zhao, Guijun" uniqKey="Zhao G" first="Guijun" last="Zhao">Guijun Zhao</name>
</author>
<author>
<name sortKey="Lu, Hui" sort="Lu, Hui" uniqKey="Lu H" first="Hui" last="Lu">Hui Lu</name>
</author>
<author>
<name sortKey="Case, David A" sort="Case, David A" uniqKey="Case D" first="David A" last="Case">David A. Case</name>
</author>
<author>
<name sortKey="Johnson, Michael E" sort="Johnson, Michael E" uniqKey="Johnson M" first="Michael E" last="Johnson">Michael E. Johnson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22004941</idno>
<idno type="pmid">22004941</idno>
<idno type="doi">10.1016/j.jmb.2011.09.030</idno>
<idno type="wicri:Area/PubMed/Corpus">001460</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001460</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparison of SARS and NL63 papain-like protease binding sites and binding site dynamics: inhibitor design implications.</title>
<author>
<name sortKey="Chaudhuri, Rima" sort="Chaudhuri, Rima" uniqKey="Chaudhuri R" first="Rima" last="Chaudhuri">Rima Chaudhuri</name>
<affiliation>
<nlm:affiliation>Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Sishi" sort="Tang, Sishi" uniqKey="Tang S" first="Sishi" last="Tang">Sishi Tang</name>
</author>
<author>
<name sortKey="Zhao, Guijun" sort="Zhao, Guijun" uniqKey="Zhao G" first="Guijun" last="Zhao">Guijun Zhao</name>
</author>
<author>
<name sortKey="Lu, Hui" sort="Lu, Hui" uniqKey="Lu H" first="Hui" last="Lu">Hui Lu</name>
</author>
<author>
<name sortKey="Case, David A" sort="Case, David A" uniqKey="Case D" first="David A" last="Case">David A. Case</name>
</author>
<author>
<name sortKey="Johnson, Michael E" sort="Johnson, Michael E" uniqKey="Johnson M" first="Michael E" last="Johnson">Michael E. Johnson</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="eISSN">1089-8638</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Coronavirus NL63, Human (enzymology)</term>
<term>Drug Design</term>
<term>Models, Molecular</term>
<term>Molecular Dynamics Simulation</term>
<term>Molecular Sequence Data</term>
<term>Peptide Hydrolases (chemistry)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Protease Inhibitors (chemistry)</term>
<term>Protease Inhibitors (pharmacology)</term>
<term>SARS Virus (enzymology)</term>
<term>Sequence Homology, Amino Acid</term>
<term>Static Electricity</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptide Hydrolases</term>
<term>Protease Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coronavirus NL63, Human</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptide Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Protease Inhibitors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Drug Design</term>
<term>Models, Molecular</term>
<term>Molecular Dynamics Simulation</term>
<term>Molecular Sequence Data</term>
<term>Sequence Homology, Amino Acid</term>
<term>Static Electricity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The human severe acute respiratory syndrome coronavirus (SARS-CoV) and the NL63 coronaviruses are human respiratory pathogens for which no effective antiviral treatment exists. The papain-like cysteine proteases encoded by the coronavirus (SARS-CoV: PLpro; NL63: PLP1 and PLP2) represent potential targets for antiviral drug development. Three recent inhibitor-bound PLpro structures highlight the role of an extremely flexible six-residue loop in inhibitor binding. The high binding site plasticity is a major challenge in computational drug discovery/design efforts. From conventional molecular dynamics and accelerated molecular dynamics (aMD) simulations, we find that with conventional molecular dynamics simulation, PLpro translationally samples the open and closed conformation of BL2 loop on a picosecond-nanosecond timescale but does not reproduce the peptide bond inversion between loop residues Tyr269 and Gln270 that is observed on inhibitor GRL0617 binding. Only aMD simulation, starting from the closed loop conformation, reproduced the 180° ϕ-ψ dihedral rotation back to the open loop state. The Tyr-Gln peptide bond inversion appears to involve a progressive conformational change of the full loop, starting at one side, and progressing to the other. We used the SARS-CoV apo X-ray structure to develop a model of the NL63-PLP2 catalytic site. Superimposition of the PLP2 model on the PLpro X-ray structure identifies binding site residues in PLP2 that contribute to the distinct substrate cleavage site specificities between the two proteases. The topological and electrostatic differences between the two protease binding sites also help explain the selectivity of non-covalent PLpro inhibitors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22004941</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>01</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1089-8638</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>414</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Nov</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparison of SARS and NL63 papain-like protease binding sites and binding site dynamics: inhibitor design implications.</ArticleTitle>
<Pagination>
<MedlinePgn>272-88</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.jmb.2011.09.030</ELocationID>
<Abstract>
<AbstractText>The human severe acute respiratory syndrome coronavirus (SARS-CoV) and the NL63 coronaviruses are human respiratory pathogens for which no effective antiviral treatment exists. The papain-like cysteine proteases encoded by the coronavirus (SARS-CoV: PLpro; NL63: PLP1 and PLP2) represent potential targets for antiviral drug development. Three recent inhibitor-bound PLpro structures highlight the role of an extremely flexible six-residue loop in inhibitor binding. The high binding site plasticity is a major challenge in computational drug discovery/design efforts. From conventional molecular dynamics and accelerated molecular dynamics (aMD) simulations, we find that with conventional molecular dynamics simulation, PLpro translationally samples the open and closed conformation of BL2 loop on a picosecond-nanosecond timescale but does not reproduce the peptide bond inversion between loop residues Tyr269 and Gln270 that is observed on inhibitor GRL0617 binding. Only aMD simulation, starting from the closed loop conformation, reproduced the 180° ϕ-ψ dihedral rotation back to the open loop state. The Tyr-Gln peptide bond inversion appears to involve a progressive conformational change of the full loop, starting at one side, and progressing to the other. We used the SARS-CoV apo X-ray structure to develop a model of the NL63-PLP2 catalytic site. Superimposition of the PLP2 model on the PLpro X-ray structure identifies binding site residues in PLP2 that contribute to the distinct substrate cleavage site specificities between the two proteases. The topological and electrostatic differences between the two protease binding sites also help explain the selectivity of non-covalent PLpro inhibitors.</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chaudhuri</LastName>
<ForeName>Rima</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Sishi</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Guijun</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Hui</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Case</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Michael E</ForeName>
<Initials>ME</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM057513-10</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 AI089535</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI060915-01A1</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM057513-08</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM057513-11</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM057513-09A2</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM057513</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI060915-02</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM57513</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI060915-05</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI060915</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM057513-08S1</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI060915-04</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI060915-03</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM057513-12</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 AI089535-01</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011480">Protease Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058957" MajorTopicYN="N">Coronavirus NL63, Human</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015195" MajorTopicYN="N">Drug Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011480" MajorTopicYN="N">Protease Inhibitors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22004941</ArticleId>
<ArticleId IdType="pii">S0022-2836(11)01036-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.jmb.2011.09.030</ArticleId>
<ArticleId IdType="pmc">PMC3397151</ArticleId>
<ArticleId IdType="mid">NIHMS328959</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1668-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200636</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Apr;79(7):4550-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15767458</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Chem Soc. 2009 Jan 14;131(1):147-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19128175</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8639-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912312</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1991 Feb;180(2):567-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-2315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2000 Sep;9(9):1753-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11045621</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306591</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650185</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2001 Jun;82(Pt 6):1273-1281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11369870</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):320-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030705</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2010 Jul 8;53(13):4968-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20527968</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1993 Dec 5;234(3):779-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8254673</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 1997;142(3):629-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9349308</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2006 Jun;44(6):2063-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16757599</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6212-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2009 Aug 27;52(16):5228-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19645480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1997 Apr 4;267(3):727-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9126849</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):13600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2001 Dec;82(Pt 12):2927-2933</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714968</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2006 Mar;13(3):261-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16638531</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Chem Phys. 2004 Jun 22;120(24):11919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581910</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Aug;7(4):412-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358261</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):7988-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15897467</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Sep;52(3):2893-2906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9963736</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2004 May 4;43(17):4906-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109248</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121802</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Nov;76(22):11518-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12388713</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1998 Mar 15;242(2):288-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9514967</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Apr;81(8):4012-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17267506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306590</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Jun;81(11):6007-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392370</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Aug;80(15):7481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840328</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613317</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852458</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731931</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1995 Apr 1;208(1):48-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11831730</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proteins. 2006 Mar 15;62(3):760-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16358325</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 May 21;274(21):14918-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329692</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001460 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001460 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22004941
   |texte=   Comparison of SARS and NL63 papain-like protease binding sites and binding site dynamics: inhibitor design implications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22004941" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021