Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension.

Identifieur interne : 001454 ( PubMed/Corpus ); précédent : 001453; suivant : 001455

The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension.

Auteurs : Aartjan J W. Te Velthuis ; Sjoerd H E. Van Den Worm ; Eric J. Snijder

Source :

RBID : pubmed:22039154

English descriptors

Abstract

Uniquely among RNA viruses, replication of the ~30-kb SARS-coronavirus genome is believed to involve two RNA-dependent RNA polymerase (RdRp) activities. The first is primer-dependent and associated with the 106-kDa non-structural protein 12 (nsp12), whereas the second is catalysed by the 22-kDa nsp8. This latter enzyme is capable of de novo initiation and has been proposed to operate as a primase. Interestingly, this protein has only been crystallized together with the 10-kDa nsp7, forming a hexadecameric, dsRNA-encircling ring structure [i.e. nsp(7+8), consisting of 8 copies of both nsps]. To better understand the implications of these structural characteristics for nsp8-driven RNA synthesis, we studied the prerequisites for the formation of the nsp(7+8) complex and its polymerase activity. We found that in particular the exposure of nsp8's natural N-terminal residue was paramount for both the protein's ability to associate with nsp7 and for boosting its RdRp activity. Moreover, this 'improved' recombinant nsp8 was capable of extending primed RNA templates, a property that had gone unnoticed thus far. The latter activity is, however, ~20-fold weaker than that of the primer-dependent nsp12-RdRp at equal monomer concentrations. Finally, site-directed mutagenesis of conserved D/ExD/E motifs was employed to identify residues crucial for nsp(7+8) RdRp activity.

DOI: 10.1093/nar/gkr893
PubMed: 22039154

Links to Exploration step

pubmed:22039154

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension.</title>
<author>
<name sortKey="Te Velthuis, Aartjan J W" sort="Te Velthuis, Aartjan J W" uniqKey="Te Velthuis A" first="Aartjan J W" last="Te Velthuis">Aartjan J W. Te Velthuis</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Den Worm, Sjoerd H E" sort="Van Den Worm, Sjoerd H E" uniqKey="Van Den Worm S" first="Sjoerd H E" last="Van Den Worm">Sjoerd H E. Van Den Worm</name>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22039154</idno>
<idno type="pmid">22039154</idno>
<idno type="doi">10.1093/nar/gkr893</idno>
<idno type="wicri:Area/PubMed/Corpus">001454</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001454</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension.</title>
<author>
<name sortKey="Te Velthuis, Aartjan J W" sort="Te Velthuis, Aartjan J W" uniqKey="Te Velthuis A" first="Aartjan J W" last="Te Velthuis">Aartjan J W. Te Velthuis</name>
<affiliation>
<nlm:affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Den Worm, Sjoerd H E" sort="Van Den Worm, Sjoerd H E" uniqKey="Van Den Worm S" first="Sjoerd H E" last="Van Den Worm">Sjoerd H E. Van Den Worm</name>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J" last="Snijder">Eric J. Snijder</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Cations, Divalent (chemistry)</term>
<term>DNA-Directed RNA Polymerases (metabolism)</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Multimerization</term>
<term>Protons</term>
<term>RNA (metabolism)</term>
<term>RNA Replicase (chemistry)</term>
<term>RNA Replicase (genetics)</term>
<term>RNA Replicase (metabolism)</term>
<term>RNA, Double-Stranded (metabolism)</term>
<term>SARS Virus (enzymology)</term>
<term>Sequence Homology, Amino Acid</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cations, Divalent</term>
<term>RNA Replicase</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA Replicase</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA-Directed RNA Polymerases</term>
<term>RNA</term>
<term>RNA Replicase</term>
<term>RNA, Double-Stranded</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Mutagenesis, Site-Directed</term>
<term>Protein Multimerization</term>
<term>Protons</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Uniquely among RNA viruses, replication of the ~30-kb SARS-coronavirus genome is believed to involve two RNA-dependent RNA polymerase (RdRp) activities. The first is primer-dependent and associated with the 106-kDa non-structural protein 12 (nsp12), whereas the second is catalysed by the 22-kDa nsp8. This latter enzyme is capable of de novo initiation and has been proposed to operate as a primase. Interestingly, this protein has only been crystallized together with the 10-kDa nsp7, forming a hexadecameric, dsRNA-encircling ring structure [i.e. nsp(7+8), consisting of 8 copies of both nsps]. To better understand the implications of these structural characteristics for nsp8-driven RNA synthesis, we studied the prerequisites for the formation of the nsp(7+8) complex and its polymerase activity. We found that in particular the exposure of nsp8's natural N-terminal residue was paramount for both the protein's ability to associate with nsp7 and for boosting its RdRp activity. Moreover, this 'improved' recombinant nsp8 was capable of extending primed RNA templates, a property that had gone unnoticed thus far. The latter activity is, however, ~20-fold weaker than that of the primer-dependent nsp12-RdRp at equal monomer concentrations. Finally, site-directed mutagenesis of conserved D/ExD/E motifs was employed to identify residues crucial for nsp(7+8) RdRp activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22039154</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>04</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>40</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension.</ArticleTitle>
<Pagination>
<MedlinePgn>1737-47</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkr893</ELocationID>
<Abstract>
<AbstractText>Uniquely among RNA viruses, replication of the ~30-kb SARS-coronavirus genome is believed to involve two RNA-dependent RNA polymerase (RdRp) activities. The first is primer-dependent and associated with the 106-kDa non-structural protein 12 (nsp12), whereas the second is catalysed by the 22-kDa nsp8. This latter enzyme is capable of de novo initiation and has been proposed to operate as a primase. Interestingly, this protein has only been crystallized together with the 10-kDa nsp7, forming a hexadecameric, dsRNA-encircling ring structure [i.e. nsp(7+8), consisting of 8 copies of both nsps]. To better understand the implications of these structural characteristics for nsp8-driven RNA synthesis, we studied the prerequisites for the formation of the nsp(7+8) complex and its polymerase activity. We found that in particular the exposure of nsp8's natural N-terminal residue was paramount for both the protein's ability to associate with nsp7 and for boosting its RdRp activity. Moreover, this 'improved' recombinant nsp8 was capable of extending primed RNA templates, a property that had gone unnoticed thus far. The latter activity is, however, ~20-fold weaker than that of the primer-dependent nsp12-RdRp at equal monomer concentrations. Finally, site-directed mutagenesis of conserved D/ExD/E motifs was employed to identify residues crucial for nsp(7+8) RdRp activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>te Velthuis</LastName>
<ForeName>Aartjan J W</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van den Worm</LastName>
<ForeName>Sjoerd H E</ForeName>
<Initials>SH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Snijder</LastName>
<ForeName>Eric J</ForeName>
<Initials>EJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002413">Cations, Divalent</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011522">Protons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C034477">RNA primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012330">RNA, Double-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.48</RegistryNumber>
<NameOfSubstance UI="D012324">RNA Replicase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012321">DNA-Directed RNA Polymerases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002413" MajorTopicYN="N">Cations, Divalent</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012321" MajorTopicYN="N">DNA-Directed RNA Polymerases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011522" MajorTopicYN="N">Protons</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="N">RNA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012324" MajorTopicYN="N">RNA Replicase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012330" MajorTopicYN="N">RNA, Double-Stranded</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22039154</ArticleId>
<ArticleId IdType="pii">gkr893</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkr893</ArticleId>
<ArticleId IdType="pmc">PMC3287201</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2000 Dec;6(12):1375-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11100123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(1):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19875418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr;6(4):e1000863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20421945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(11):e1001176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21079686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Aug;77(15):8181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Dec 15;31(24):7117-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14654687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respirology. 2003 Nov;8 Suppl:S9-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15018127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Sep 1;23(17):3462-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15306852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Jun 26;17(12):4847-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2526320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 Nov 11;21(22):5212-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7504813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Mar;69(3):1532-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7853486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jan 29;274(5):2706-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9915801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 1999 Oct;17(1):128-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10497078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Jan 28;326(4):905-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15607755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2005 Jun;66(2-3):159-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15911031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(12):3875-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16027112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2005 Nov 3;48(22):6832-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16250642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2006 Jan-Feb;16(1):37-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16287208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Nov;12(11):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Jun;87(Pt 6):1403-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:3-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Oct 18;25(20):4933-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17024178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(7):3583-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17251299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4267-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Oct;81(19):10280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17634238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2007 Dec 13;2(6):404-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18078692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(3):1214-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 May;133(2):136-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18255185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18827877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Jul 20;273(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891401</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001454 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001454 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22039154
   |texte=   The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22039154" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021