Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing.

Identifieur interne : 001283 ( PubMed/Corpus ); précédent : 001282; suivant : 001284

Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing.

Auteurs : Hatem A. Elshabrawy ; Melissa M. Coughlin ; Susan C. Baker ; Bellur S. Prabhakar

Source :

RBID : pubmed:23185609

English descriptors

Abstract

Immune sera from convalescent patients have been shown to be effective in the treatment of patients infected with Severe Acute Respiratory Syndrome Virus (SARS-CoV) making passive immune therapy with human monoclonal antibodies an attractive treatment strategy for SARS. Previously, using Xenomouse (Amgen British Columbia Inc), we produced a panel of neutralizing Human monoclonal antibodies (HmAbs) that could specifically bind to the ectodomain of the SARS-CoV spike (S) glycoprotein. Some of the HmAbs were S1 domain specific, while some were not. In this study, we describe non-S1 binding neutralizing HmAbs that can specifically bind to the conserved S2 domain of the S protein. However, unlike the S1 specific HmAbs, the S2 specific HmAbs can neutralize pseudotyped viruses expressing different S proteins containing receptor binding domain sequences of various clinical isolates. These data indicate that HmAbs which bind to conserved regions of the S protein are more suitable for conferring protection against a wide range of SARS-CoV variants and have implications for generating therapeutic antibodies or subunit vaccines against other enveloped viruses.

DOI: 10.1371/journal.pone.0050366
PubMed: 23185609

Links to Exploration step

pubmed:23185609

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing.</title>
<author>
<name sortKey="Elshabrawy, Hatem A" sort="Elshabrawy, Hatem A" uniqKey="Elshabrawy H" first="Hatem A" last="Elshabrawy">Hatem A. Elshabrawy</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coughlin, Melissa M" sort="Coughlin, Melissa M" uniqKey="Coughlin M" first="Melissa M" last="Coughlin">Melissa M. Coughlin</name>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
</author>
<author>
<name sortKey="Prabhakar, Bellur S" sort="Prabhakar, Bellur S" uniqKey="Prabhakar B" first="Bellur S" last="Prabhakar">Bellur S. Prabhakar</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23185609</idno>
<idno type="pmid">23185609</idno>
<idno type="doi">10.1371/journal.pone.0050366</idno>
<idno type="wicri:Area/PubMed/Corpus">001283</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001283</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing.</title>
<author>
<name sortKey="Elshabrawy, Hatem A" sort="Elshabrawy, Hatem A" uniqKey="Elshabrawy H" first="Hatem A" last="Elshabrawy">Hatem A. Elshabrawy</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Coughlin, Melissa M" sort="Coughlin, Melissa M" uniqKey="Coughlin M" first="Melissa M" last="Coughlin">Melissa M. Coughlin</name>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
</author>
<author>
<name sortKey="Prabhakar, Bellur S" sort="Prabhakar, Bellur S" uniqKey="Prabhakar B" first="Bellur S" last="Prabhakar">Bellur S. Prabhakar</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antibodies, Neutralizing (pharmacology)</term>
<term>Antibodies, Viral (pharmacology)</term>
<term>Antibody Affinity</term>
<term>Antibody Specificity</term>
<term>Binding Sites, Antibody</term>
<term>Cross Reactions</term>
<term>Epitope Mapping</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Membrane Glycoproteins (antagonists & inhibitors)</term>
<term>Membrane Glycoproteins (genetics)</term>
<term>Membrane Glycoproteins (immunology)</term>
<term>Neutralization Tests</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Recombinant Proteins (antagonists & inhibitors)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (immunology)</term>
<term>SARS Virus (drug effects)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (immunology)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Severe Acute Respiratory Syndrome (prevention & control)</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Transfection</term>
<term>Viral Envelope Proteins (antagonists & inhibitors)</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Recombinant Proteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Recombinant Proteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Membrane Glycoproteins</term>
<term>Recombinant Proteins</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antibodies, Neutralizing</term>
<term>Antibodies, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Antibody Affinity</term>
<term>Antibody Specificity</term>
<term>Binding Sites, Antibody</term>
<term>Cross Reactions</term>
<term>Epitope Mapping</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Neutralization Tests</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Immune sera from convalescent patients have been shown to be effective in the treatment of patients infected with Severe Acute Respiratory Syndrome Virus (SARS-CoV) making passive immune therapy with human monoclonal antibodies an attractive treatment strategy for SARS. Previously, using Xenomouse (Amgen British Columbia Inc), we produced a panel of neutralizing Human monoclonal antibodies (HmAbs) that could specifically bind to the ectodomain of the SARS-CoV spike (S) glycoprotein. Some of the HmAbs were S1 domain specific, while some were not. In this study, we describe non-S1 binding neutralizing HmAbs that can specifically bind to the conserved S2 domain of the S protein. However, unlike the S1 specific HmAbs, the S2 specific HmAbs can neutralize pseudotyped viruses expressing different S proteins containing receptor binding domain sequences of various clinical isolates. These data indicate that HmAbs which bind to conserved regions of the S protein are more suitable for conferring protection against a wide range of SARS-CoV variants and have implications for generating therapeutic antibodies or subunit vaccines against other enveloped viruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23185609</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing.</ArticleTitle>
<Pagination>
<MedlinePgn>e50366</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0050366</ELocationID>
<Abstract>
<AbstractText>Immune sera from convalescent patients have been shown to be effective in the treatment of patients infected with Severe Acute Respiratory Syndrome Virus (SARS-CoV) making passive immune therapy with human monoclonal antibodies an attractive treatment strategy for SARS. Previously, using Xenomouse (Amgen British Columbia Inc), we produced a panel of neutralizing Human monoclonal antibodies (HmAbs) that could specifically bind to the ectodomain of the SARS-CoV spike (S) glycoprotein. Some of the HmAbs were S1 domain specific, while some were not. In this study, we describe non-S1 binding neutralizing HmAbs that can specifically bind to the conserved S2 domain of the S protein. However, unlike the S1 specific HmAbs, the S2 specific HmAbs can neutralize pseudotyped viruses expressing different S proteins containing receptor binding domain sequences of various clinical isolates. These data indicate that HmAbs which bind to conserved regions of the S protein are more suitable for conferring protection against a wide range of SARS-CoV variants and have implications for generating therapeutic antibodies or subunit vaccines against other enveloped viruses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Elshabrawy</LastName>
<ForeName>Hatem A</ForeName>
<Initials>HA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coughlin</LastName>
<ForeName>Melissa M</ForeName>
<Initials>MM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Susan C</ForeName>
<Initials>SC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prabhakar</LastName>
<ForeName>Bellur S</ForeName>
<Initials>BS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1U01AI082296</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D057134">Antibodies, Neutralizing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578553">MHV surface projection glycoprotein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008562">Membrane Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D057134" MajorTopicYN="N">Antibodies, Neutralizing</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000915" MajorTopicYN="N">Antibody Affinity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000918" MajorTopicYN="N">Antibody Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001666" MajorTopicYN="N">Binding Sites, Antibody</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003429" MajorTopicYN="N">Cross Reactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018604" MajorTopicYN="N">Epitope Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008562" MajorTopicYN="N">Membrane Glycoproteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009500" MajorTopicYN="N">Neutralization Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23185609</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0050366</ArticleId>
<ArticleId IdType="pii">PONE-D-12-18419</ArticleId>
<ArticleId IdType="pmc">PMC3503966</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Sep;79(18):11892-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16140765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2005;2:73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16122388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2004 Apr;1(2):119-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Sci. 2005 Oct;12(5):711-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jan;80(2):941-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16378996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Feb 10;281(6):3198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Jul;3(7):e237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16796401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2006;1:e24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17183651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Apr 25;361(1):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17161858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Dec;25(12):1421-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18066039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Apr;82(7):3220-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8887-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2009 Jan;81(1):82-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Mar;7(3):226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19198616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(5):e5672</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19478856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Nov 10;394(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2010 Mar 15;201(6):946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Apr;84(7):3134-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer. 2010;9:299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21092230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Dec 15;480(7377):336-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22113616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 1;428(6982):561-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 May 14;279(20):20836-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(13):6938-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 1989 Dec;3(12):777-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2483618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Dec 23;95(7):871-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9875840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2430-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3289-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Mar 30;334(1):74-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hybridoma (Larchmt). 2005 Feb;24(1):36-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15785207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2005 Apr 15;174(8):4908-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(11):7195-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jul;79(14):9062-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001283 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001283 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23185609
   |texte=   Human monoclonal antibodies against highly conserved HR1 and HR2 domains of the SARS-CoV spike protein are more broadly neutralizing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23185609" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021