Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and biochemical basis for the difference in the helicase activity of two different constructs of SARS-CoV helicase.

Identifieur interne : 001265 ( PubMed/Corpus ); précédent : 001264; suivant : 001266

Structural and biochemical basis for the difference in the helicase activity of two different constructs of SARS-CoV helicase.

Auteurs : A O Adedeji ; K. Singh ; S G Sarafianos

Source :

RBID : pubmed:23273200

English descriptors

Abstract

The non—structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS—CoV) is a helicase that separates double—stranded RNA or DNA with a 5'—3' polarity, using the energy of nucleotide hydrolysis. We have previously determined the minimal mechanism of helicase function by nsp13 where we demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base—pairs each with a catalytic rate of 30 steps per second. In that study we used different constructs of nsp13 (GST and H6 constructs). GST—nsp13 showed much more efficient nucleic acid unwinding than the H6—tagged counterpart. At 0.1 second, more than 50% of the ATP is hydrolyzed by GST—nsp13 compared to less than 5% ATP hydrolysis by H6—nsp13. Interestingly, the two constructs have the same binding affinity for nucleic acids. We, therefore propose that the difference in the catalytic efficiency of these two constructs is due to the interference of ATP binding by the histidine tag at the amino—terminus of nsp13.

PubMed: 23273200

Links to Exploration step

pubmed:23273200

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural and biochemical basis for the difference in the helicase activity of two different constructs of SARS-CoV helicase.</title>
<author>
<name sortKey="Adedeji, A O" sort="Adedeji, A O" uniqKey="Adedeji A" first="A O" last="Adedeji">A O Adedeji</name>
<affiliation>
<nlm:affiliation>Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, K" sort="Singh, K" uniqKey="Singh K" first="K" last="Singh">K. Singh</name>
</author>
<author>
<name sortKey="Sarafianos, S G" sort="Sarafianos, S G" uniqKey="Sarafianos S" first="S G" last="Sarafianos">S G Sarafianos</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23273200</idno>
<idno type="pmid">23273200</idno>
<idno type="wicri:Area/PubMed/Corpus">001265</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001265</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural and biochemical basis for the difference in the helicase activity of two different constructs of SARS-CoV helicase.</title>
<author>
<name sortKey="Adedeji, A O" sort="Adedeji, A O" uniqKey="Adedeji A" first="A O" last="Adedeji">A O Adedeji</name>
<affiliation>
<nlm:affiliation>Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Singh, K" sort="Singh, K" uniqKey="Singh K" first="K" last="Singh">K. Singh</name>
</author>
<author>
<name sortKey="Sarafianos, S G" sort="Sarafianos, S G" uniqKey="Sarafianos S" first="S G" last="Sarafianos">S G Sarafianos</name>
</author>
</analytic>
<series>
<title level="j">Cellular and molecular biology (Noisy-le-Grand, France)</title>
<idno type="eISSN">1165-158X</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>DNA Helicases (chemistry)</term>
<term>DNA Helicases (genetics)</term>
<term>DNA Helicases (metabolism)</term>
<term>Nucleic Acids (metabolism)</term>
<term>Protein Binding</term>
<term>SARS Virus (enzymology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA Helicases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Helicases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>DNA Helicases</term>
<term>Nucleic Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Binding</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The non—structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS—CoV) is a helicase that separates double—stranded RNA or DNA with a 5'—3' polarity, using the energy of nucleotide hydrolysis. We have previously determined the minimal mechanism of helicase function by nsp13 where we demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base—pairs each with a catalytic rate of 30 steps per second. In that study we used different constructs of nsp13 (GST and H6 constructs). GST—nsp13 showed much more efficient nucleic acid unwinding than the H6—tagged counterpart. At 0.1 second, more than 50% of the ATP is hydrolyzed by GST—nsp13 compared to less than 5% ATP hydrolysis by H6—nsp13. Interestingly, the two constructs have the same binding affinity for nucleic acids. We, therefore propose that the difference in the catalytic efficiency of these two constructs is due to the interference of ATP binding by the histidine tag at the amino—terminus of nsp13.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23273200</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1165-158X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>58</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Cellular and molecular biology (Noisy-le-Grand, France)</Title>
<ISOAbbreviation>Cell. Mol. Biol. (Noisy-le-grand)</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural and biochemical basis for the difference in the helicase activity of two different constructs of SARS-CoV helicase.</ArticleTitle>
<Pagination>
<MedlinePgn>114-21</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The non—structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS—CoV) is a helicase that separates double—stranded RNA or DNA with a 5'—3' polarity, using the energy of nucleotide hydrolysis. We have previously determined the minimal mechanism of helicase function by nsp13 where we demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base—pairs each with a catalytic rate of 30 steps per second. In that study we used different constructs of nsp13 (GST and H6 constructs). GST—nsp13 showed much more efficient nucleic acid unwinding than the H6—tagged counterpart. At 0.1 second, more than 50% of the ATP is hydrolyzed by GST—nsp13 compared to less than 5% ATP hydrolysis by H6—nsp13. Interestingly, the two constructs have the same binding affinity for nucleic acids. We, therefore propose that the difference in the catalytic efficiency of these two constructs is due to the interference of ATP binding by the histidine tag at the amino—terminus of nsp13.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adedeji</LastName>
<ForeName>A O</ForeName>
<Initials>AO</Initials>
<AffiliationInfo>
<Affiliation>Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, MO 65211, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sarafianos</LastName>
<ForeName>S G</ForeName>
<Initials>SG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI074389</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R33 AI079801</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI079801</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI094715</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI074389</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI079801</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI076119</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI094715</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI100890</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI076119</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>12</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>France</Country>
<MedlineTA>Cell Mol Biol (Noisy-le-grand)</MedlineTA>
<NlmUniqueID>9216789</NlmUniqueID>
<ISSNLinking>0145-5680</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009696">Nucleic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.-</RegistryNumber>
<NameOfSubstance UI="D004265">DNA Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004265" MajorTopicYN="N">DNA Helicases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009696" MajorTopicYN="N">Nucleic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23273200</ArticleId>
<ArticleId IdType="pmc">PMC3612351</ArticleId>
<ArticleId IdType="mid">NIHMS444040</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2001 Jul;75(14):6676-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Jan 26;104(2):177-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11207360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 17;361(9370):1701-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12767737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1761-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39578-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Feb;15(2):734-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14657243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5619-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9977-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Oct 25;328(2):208-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15464841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1976 Jun 1;65(2):431-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">133022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1976 Jun 1;65(2):441-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">133023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1976 Oct 10;251(19):6127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1085772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Jan;74(1):193-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">138139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1977 Sep 15;79(1):33-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">199440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1977 Sep 15;79(1):39-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">199441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 May 10;253(9):3298-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">147874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Symp Quant Biol. 1979;43 Pt 1:335-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">225105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Dec 10;254(23):11997-2001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">227886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Dec 10;254(23):12002-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">227887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1981;50:233-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6267987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1990;59:289-329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2165383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1992 Jan;6(1):5-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1310794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Feb 5;268(4):2269-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8381400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Nov 17;83(4):655-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7585968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Apr 12;272(5259):258-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8602509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Jul 12;271(28):16678-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8663273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1996;65:169-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Aug 22;90(4):635-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9288744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1997 Sep;17(1):100-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9288107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):13600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Jan 12;24(1):180-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15565170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Sep;57(6):1664-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16135232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Feb 15;367:17-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2006 Mar;13(3):242-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16474403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 7;281(27):18265-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16670085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(5):e459</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17520018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Aug 22;26(16):3804-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17641684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 May;4(5):e1000054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Sep 30;47(39):10449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18767814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(10):e3299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18827877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Oct;66(Pt 10):1116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20944244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Nov;38(21):7626-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20671029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Mar 18;41(6):693-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21419344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2012 Sep;56(9):4718-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22733076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2000;69:651-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10966472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jan 5;291(5501):121-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11141562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Nov 29;324(3):409-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12445778</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001265 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001265 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23273200
   |texte=   Structural and biochemical basis for the difference in the helicase activity of two different constructs of SARS-CoV helicase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23273200" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021