Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.

Identifieur interne : 001227 ( PubMed/Corpus ); précédent : 001226; suivant : 001228

TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.

Auteurs : Stephanie Jemielity ; Jinyize J. Wang ; Ying Kai Chan ; Asim A. Ahmed ; Wenhui Li ; Sheena Monahan ; Xia Bu ; Michael Farzan ; Gordon J. Freeman ; Dale T. Umetsu ; Rosemarie H. Dekruyff ; Hyeryun Choe

Source :

RBID : pubmed:23555248

English descriptors

Abstract

Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4) specifically bind phosphatidylserine (PS). TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs) pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.

DOI: 10.1371/journal.ppat.1003232
PubMed: 23555248

Links to Exploration step

pubmed:23555248

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.</title>
<author>
<name sortKey="Jemielity, Stephanie" sort="Jemielity, Stephanie" uniqKey="Jemielity S" first="Stephanie" last="Jemielity">Stephanie Jemielity</name>
<affiliation>
<nlm:affiliation>Division of Respiratory Diseases Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinyize J" sort="Wang, Jinyize J" uniqKey="Wang J" first="Jinyize J" last="Wang">Jinyize J. Wang</name>
</author>
<author>
<name sortKey="Chan, Ying Kai" sort="Chan, Ying Kai" uniqKey="Chan Y" first="Ying Kai" last="Chan">Ying Kai Chan</name>
</author>
<author>
<name sortKey="Ahmed, Asim A" sort="Ahmed, Asim A" uniqKey="Ahmed A" first="Asim A" last="Ahmed">Asim A. Ahmed</name>
</author>
<author>
<name sortKey="Li, Wenhui" sort="Li, Wenhui" uniqKey="Li W" first="Wenhui" last="Li">Wenhui Li</name>
</author>
<author>
<name sortKey="Monahan, Sheena" sort="Monahan, Sheena" uniqKey="Monahan S" first="Sheena" last="Monahan">Sheena Monahan</name>
</author>
<author>
<name sortKey="Bu, Xia" sort="Bu, Xia" uniqKey="Bu X" first="Xia" last="Bu">Xia Bu</name>
</author>
<author>
<name sortKey="Farzan, Michael" sort="Farzan, Michael" uniqKey="Farzan M" first="Michael" last="Farzan">Michael Farzan</name>
</author>
<author>
<name sortKey="Freeman, Gordon J" sort="Freeman, Gordon J" uniqKey="Freeman G" first="Gordon J" last="Freeman">Gordon J. Freeman</name>
</author>
<author>
<name sortKey="Umetsu, Dale T" sort="Umetsu, Dale T" uniqKey="Umetsu D" first="Dale T" last="Umetsu">Dale T. Umetsu</name>
</author>
<author>
<name sortKey="Dekruyff, Rosemarie H" sort="Dekruyff, Rosemarie H" uniqKey="Dekruyff R" first="Rosemarie H" last="Dekruyff">Rosemarie H. Dekruyff</name>
</author>
<author>
<name sortKey="Choe, Hyeryun" sort="Choe, Hyeryun" uniqKey="Choe H" first="Hyeryun" last="Choe">Hyeryun Choe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23555248</idno>
<idno type="pmid">23555248</idno>
<idno type="doi">10.1371/journal.ppat.1003232</idno>
<idno type="wicri:Area/PubMed/Corpus">001227</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001227</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.</title>
<author>
<name sortKey="Jemielity, Stephanie" sort="Jemielity, Stephanie" uniqKey="Jemielity S" first="Stephanie" last="Jemielity">Stephanie Jemielity</name>
<affiliation>
<nlm:affiliation>Division of Respiratory Diseases Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jinyize J" sort="Wang, Jinyize J" uniqKey="Wang J" first="Jinyize J" last="Wang">Jinyize J. Wang</name>
</author>
<author>
<name sortKey="Chan, Ying Kai" sort="Chan, Ying Kai" uniqKey="Chan Y" first="Ying Kai" last="Chan">Ying Kai Chan</name>
</author>
<author>
<name sortKey="Ahmed, Asim A" sort="Ahmed, Asim A" uniqKey="Ahmed A" first="Asim A" last="Ahmed">Asim A. Ahmed</name>
</author>
<author>
<name sortKey="Li, Wenhui" sort="Li, Wenhui" uniqKey="Li W" first="Wenhui" last="Li">Wenhui Li</name>
</author>
<author>
<name sortKey="Monahan, Sheena" sort="Monahan, Sheena" uniqKey="Monahan S" first="Sheena" last="Monahan">Sheena Monahan</name>
</author>
<author>
<name sortKey="Bu, Xia" sort="Bu, Xia" uniqKey="Bu X" first="Xia" last="Bu">Xia Bu</name>
</author>
<author>
<name sortKey="Farzan, Michael" sort="Farzan, Michael" uniqKey="Farzan M" first="Michael" last="Farzan">Michael Farzan</name>
</author>
<author>
<name sortKey="Freeman, Gordon J" sort="Freeman, Gordon J" uniqKey="Freeman G" first="Gordon J" last="Freeman">Gordon J. Freeman</name>
</author>
<author>
<name sortKey="Umetsu, Dale T" sort="Umetsu, Dale T" uniqKey="Umetsu D" first="Dale T" last="Umetsu">Dale T. Umetsu</name>
</author>
<author>
<name sortKey="Dekruyff, Rosemarie H" sort="Dekruyff, Rosemarie H" uniqKey="Dekruyff R" first="Rosemarie H" last="Dekruyff">Rosemarie H. Dekruyff</name>
</author>
<author>
<name sortKey="Choe, Hyeryun" sort="Choe, Hyeryun" uniqKey="Choe H" first="Hyeryun" last="Choe">Hyeryun Choe</name>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Capsid</term>
<term>Cell Line</term>
<term>Dogs</term>
<term>Guanine Nucleotide Exchange Factors (metabolism)</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Macrophages (metabolism)</term>
<term>Macrophages (virology)</term>
<term>Mice</term>
<term>Phosphatidylserines (metabolism)</term>
<term>Proto-Oncogene Proteins (metabolism)</term>
<term>Receptors, Virus (metabolism)</term>
<term>Rho Guanine Nucleotide Exchange Factors</term>
<term>Viral Envelope Proteins</term>
<term>Virion (metabolism)</term>
<term>Virus Diseases (metabolism)</term>
<term>Virus Diseases (virology)</term>
<term>Virus Internalization</term>
<term>Viruses (pathogenicity)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Guanine Nucleotide Exchange Factors</term>
<term>Phosphatidylserines</term>
<term>Proto-Oncogene Proteins</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Macrophages</term>
<term>Virion</term>
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Macrophages</term>
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Capsid</term>
<term>Cell Line</term>
<term>Dogs</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Mice</term>
<term>Rho Guanine Nucleotide Exchange Factors</term>
<term>Viral Envelope Proteins</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4) specifically bind phosphatidylserine (PS). TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs) pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23555248</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.</ArticleTitle>
<Pagination>
<MedlinePgn>e1003232</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1003232</ELocationID>
<Abstract>
<AbstractText>Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4) specifically bind phosphatidylserine (PS). TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs) pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jemielity</LastName>
<ForeName>Stephanie</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Respiratory Diseases Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jinyize J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Ying Kai</ForeName>
<Initials>YK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ahmed</LastName>
<ForeName>Asim A</ForeName>
<Initials>AA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Wenhui</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Monahan</LastName>
<ForeName>Sheena</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bu</LastName>
<ForeName>Xia</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Farzan</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Freeman</LastName>
<ForeName>Gordon J</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Umetsu</LastName>
<ForeName>Dale T</ForeName>
<Initials>DT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dekruyff</LastName>
<ForeName>Rosemarie H</ForeName>
<Initials>RH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Choe</LastName>
<ForeName>Hyeryun</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI074879</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 AI057159</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI054456</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI054456</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI074879</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K08 AI093676</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI057159</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI089955</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI089955</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C577228">ARHGEF5 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020662">Guanine Nucleotide Exchange Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010718">Phosphatidylserines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011518">Proto-Oncogene Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064067">Rho Guanine Nucleotide Exchange Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002213" MajorTopicYN="N">Capsid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020662" MajorTopicYN="N">Guanine Nucleotide Exchange Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010718" MajorTopicYN="N">Phosphatidylserines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011518" MajorTopicYN="N">Proto-Oncogene Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064067" MajorTopicYN="N">Rho Guanine Nucleotide Exchange Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014771" MajorTopicYN="N">Virion</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014777" MajorTopicYN="N">Virus Diseases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014780" MajorTopicYN="N">Viruses</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23555248</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1003232</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-12-01640</ArticleId>
<ArticleId IdType="pmc">PMC3610696</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Jan 31;415(6871):536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2009 Apr 16;113(16):3821-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19224762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Apr;5(4):e1000358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 9;281(23):15951-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16595665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jan;82(2):938-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2003 Jun;3(6):454-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12776205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Apr 20;24(8):1634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Aug 1;364(2):342-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2005 May;6(5):447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15793575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Mar 1;446(7131):92-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(17):7814-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2007 Dec;27(6):941-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 17;108(20):8426-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):4135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Aug 15;15(16):4282-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8861957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Oct;80(20):10109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Jan;75(2):717-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11134285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2003 Sep 10;289(1):174-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12941615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Sep 15;477(7364):344-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Dec;77(24):13433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Dec;14(12):1357-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Mar 1;346(1):53-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16325883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Apr;86(7):4024-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22278244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2007 Jun 15;195(12):1808-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17492597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 12;106(19):8003-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Feb;15(2):614-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7823930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1997 May 1;232(2):430-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9168822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Aug;72(8):6621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9658108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2006 Apr;13(8):715-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 1998;3(1):9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14646513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Jan 5;305(1):115-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12504546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2011 Nov;204 Suppl 3:S1021-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21987738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Sep 30;340(2):224-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2007 Dec;27(6):927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18082433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Oct;73(10):8476-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10482600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(10):4834-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18321971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Aug;17(8):4442-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1980 Jun;77(6):3273-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6997876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(14):7344-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 15;450(7168):435-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17960135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Jul 13;106(1):117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11461707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):12019-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Immunopathol. 2011 Sep;33(5):497-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20941495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2000 Dec 5;278(1):20-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11112476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Oct 18;12(4):544-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23084921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Dec 8;275(49):38445-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Feb 15;184(4):1918-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20083673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2005 Jul;127(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15893559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2003 Apr 7;197(7):823-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2003 Nov;4(11):785-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Sep 15;477(7364):340-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21866103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2005 Dec;6(12):1245-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 May;77(10):5902-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2010 May;235(1):172-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20536563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1985 Jun 18;24(13):3107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4027233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lipids. 1966 May;1(3):209-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17805613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2003 Dec;163(6):2347-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14633608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Apr 21;9(4):286-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Mar;78(6):2943-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2010 Feb;163(2):336-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19879300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 25;320(5875):531-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2001 Jun;8(6):551-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11536005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Dec 11;282(5396):2079-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2011 Oct 28;35(4):445-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22035837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Apr 18;31(8):1947-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22395071</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001227 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001227 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23555248
   |texte=   TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23555248" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021