Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge.

Identifieur interne : 001195 ( PubMed/Corpus ); précédent : 001194; suivant : 001196

Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge.

Auteurs : Carmina Verdiá-Báguena ; Jose L. Nieto-Torres ; Antonio Alcaraz ; Marta L. Dediego ; Luis Enjuanes ; Vicente M. Aguilella

Source :

RBID : pubmed:23688394

English descriptors

Abstract

A partial characterization of the ion channels formed by the SARS coronavirus (CoV) envelope (E) protein was previously reported (C. Verdiá-Báguena et al., 2012 [12]). Here, we provide new significant insights on the involvement of lipids in the structure and function of the CoV E protein channel on the basis of three series of experiments. First, reversal potential measurements over a wide range of pH allow the dissection of the contributions to channel selectivity coming from ionizable residues of the protein transmembrane domain and also from the negatively charged groups of diphytanoyl phosphatidylserine (DPhPS) lipid. The corresponding effective pKas are consistent with the model pKas of the acidic residue candidates for titration. Second, the change of channel conductance with salt concentration reveals two distinct regimes (Donnan-controlled electrodiffusion and bulk-like electrodiffusion) fully compatible with the outcomes of selectivity experiments. Third, by measuring channel conductance in mixtures of neutral diphytanoyl phosphatidylcholine (DPhPC) lipids and negatively charged DPhPS lipids in low and high salt concentrations we conclude that the protein-lipid conformation in the channel is likely the same in charged and neutral lipids. Overall, the whole set of experiments supports the proteolipidic structure of SARS-CoV E channels and explains the large difference in channel conductance observed between neutral and charged membranes.

DOI: 10.1016/j.bbamem.2013.05.008
PubMed: 23688394

Links to Exploration step

pubmed:23688394

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge.</title>
<author>
<name sortKey="Verdia Baguena, Carmina" sort="Verdia Baguena, Carmina" uniqKey="Verdia Baguena C" first="Carmina" last="Verdiá-Báguena">Carmina Verdiá-Báguena</name>
<affiliation>
<nlm:affiliation>Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, 12071 Castellón, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nieto Torres, Jose L" sort="Nieto Torres, Jose L" uniqKey="Nieto Torres J" first="Jose L" last="Nieto-Torres">Jose L. Nieto-Torres</name>
</author>
<author>
<name sortKey="Alcaraz, Antonio" sort="Alcaraz, Antonio" uniqKey="Alcaraz A" first="Antonio" last="Alcaraz">Antonio Alcaraz</name>
</author>
<author>
<name sortKey="Dediego, Marta L" sort="Dediego, Marta L" uniqKey="Dediego M" first="Marta L" last="Dediego">Marta L. Dediego</name>
</author>
<author>
<name sortKey="Enjuanes, Luis" sort="Enjuanes, Luis" uniqKey="Enjuanes L" first="Luis" last="Enjuanes">Luis Enjuanes</name>
</author>
<author>
<name sortKey="Aguilella, Vicente M" sort="Aguilella, Vicente M" uniqKey="Aguilella V" first="Vicente M" last="Aguilella">Vicente M. Aguilella</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23688394</idno>
<idno type="pmid">23688394</idno>
<idno type="doi">10.1016/j.bbamem.2013.05.008</idno>
<idno type="wicri:Area/PubMed/Corpus">001195</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001195</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge.</title>
<author>
<name sortKey="Verdia Baguena, Carmina" sort="Verdia Baguena, Carmina" uniqKey="Verdia Baguena C" first="Carmina" last="Verdiá-Báguena">Carmina Verdiá-Báguena</name>
<affiliation>
<nlm:affiliation>Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, 12071 Castellón, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nieto Torres, Jose L" sort="Nieto Torres, Jose L" uniqKey="Nieto Torres J" first="Jose L" last="Nieto-Torres">Jose L. Nieto-Torres</name>
</author>
<author>
<name sortKey="Alcaraz, Antonio" sort="Alcaraz, Antonio" uniqKey="Alcaraz A" first="Antonio" last="Alcaraz">Antonio Alcaraz</name>
</author>
<author>
<name sortKey="Dediego, Marta L" sort="Dediego, Marta L" uniqKey="Dediego M" first="Marta L" last="Dediego">Marta L. Dediego</name>
</author>
<author>
<name sortKey="Enjuanes, Luis" sort="Enjuanes, Luis" uniqKey="Enjuanes L" first="Luis" last="Enjuanes">Luis Enjuanes</name>
</author>
<author>
<name sortKey="Aguilella, Vicente M" sort="Aguilella, Vicente M" uniqKey="Aguilella V" first="Vicente M" last="Aguilella">Vicente M. Aguilella</name>
</author>
</analytic>
<series>
<title level="j">Biochimica et biophysica acta</title>
<idno type="ISSN">0006-3002</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Hydrogen-Ion Concentration</term>
<term>Ion Channels (chemistry)</term>
<term>Ion Transport</term>
<term>Lipid Bilayers (chemistry)</term>
<term>Membrane Potentials</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Phosphatidylcholines (chemistry)</term>
<term>Phosphatidylserines (chemistry)</term>
<term>Potassium (chemistry)</term>
<term>Protein Structure, Tertiary</term>
<term>SARS Virus (chemistry)</term>
<term>Static Electricity</term>
<term>Viral Envelope Proteins (chemistry)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Ion Channels</term>
<term>Lipid Bilayers</term>
<term>Phosphatidylcholines</term>
<term>Phosphatidylserines</term>
<term>Potassium</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Hydrogen-Ion Concentration</term>
<term>Ion Transport</term>
<term>Membrane Potentials</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Structure, Tertiary</term>
<term>Static Electricity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A partial characterization of the ion channels formed by the SARS coronavirus (CoV) envelope (E) protein was previously reported (C. Verdiá-Báguena et al., 2012 [12]). Here, we provide new significant insights on the involvement of lipids in the structure and function of the CoV E protein channel on the basis of three series of experiments. First, reversal potential measurements over a wide range of pH allow the dissection of the contributions to channel selectivity coming from ionizable residues of the protein transmembrane domain and also from the negatively charged groups of diphytanoyl phosphatidylserine (DPhPS) lipid. The corresponding effective pKas are consistent with the model pKas of the acidic residue candidates for titration. Second, the change of channel conductance with salt concentration reveals two distinct regimes (Donnan-controlled electrodiffusion and bulk-like electrodiffusion) fully compatible with the outcomes of selectivity experiments. Third, by measuring channel conductance in mixtures of neutral diphytanoyl phosphatidylcholine (DPhPC) lipids and negatively charged DPhPS lipids in low and high salt concentrations we conclude that the protein-lipid conformation in the channel is likely the same in charged and neutral lipids. Overall, the whole set of experiments supports the proteolipidic structure of SARS-CoV E channels and explains the large difference in channel conductance observed between neutral and charged membranes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23688394</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>08</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-3002</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1828</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Biochimica et biophysica acta</Title>
<ISOAbbreviation>Biochim. Biophys. Acta</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge.</ArticleTitle>
<Pagination>
<MedlinePgn>2026-31</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbamem.2013.05.008</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0005-2736(13)00154-5</ELocationID>
<Abstract>
<AbstractText>A partial characterization of the ion channels formed by the SARS coronavirus (CoV) envelope (E) protein was previously reported (C. Verdiá-Báguena et al., 2012 [12]). Here, we provide new significant insights on the involvement of lipids in the structure and function of the CoV E protein channel on the basis of three series of experiments. First, reversal potential measurements over a wide range of pH allow the dissection of the contributions to channel selectivity coming from ionizable residues of the protein transmembrane domain and also from the negatively charged groups of diphytanoyl phosphatidylserine (DPhPS) lipid. The corresponding effective pKas are consistent with the model pKas of the acidic residue candidates for titration. Second, the change of channel conductance with salt concentration reveals two distinct regimes (Donnan-controlled electrodiffusion and bulk-like electrodiffusion) fully compatible with the outcomes of selectivity experiments. Third, by measuring channel conductance in mixtures of neutral diphytanoyl phosphatidylcholine (DPhPC) lipids and negatively charged DPhPS lipids in low and high salt concentrations we conclude that the protein-lipid conformation in the channel is likely the same in charged and neutral lipids. Overall, the whole set of experiments supports the proteolipidic structure of SARS-CoV E channels and explains the large difference in channel conductance observed between neutral and charged membranes. </AbstractText>
<CopyrightInformation>Copyright © 2013 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Verdiá-Báguena</LastName>
<ForeName>Carmina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Physics, Laboratory of Molecular Biophysics, Universitat Jaume I, 12071 Castellón, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nieto-Torres</LastName>
<ForeName>Jose L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alcaraz</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dediego</LastName>
<ForeName>Marta L</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Enjuanes</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aguilella</LastName>
<ForeName>Vicente M</ForeName>
<Initials>VM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AI060699</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>2P01AI060699-06A1</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>W000306844</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biochim Biophys Acta</MedlineTA>
<NlmUniqueID>0217513</NlmUniqueID>
<ISSNLinking>0006-3002</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501689">E protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007473">Ion Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008051">Lipid Bilayers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010713">Phosphatidylcholines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010718">Phosphatidylserines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>32448-32-1</RegistryNumber>
<NameOfSubstance UI="C021016">1,2-diphytanoylphosphatidylcholine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007473" MajorTopicYN="N">Ion Channels</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017136" MajorTopicYN="N">Ion Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008051" MajorTopicYN="N">Lipid Bilayers</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008564" MajorTopicYN="N">Membrane Potentials</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010713" MajorTopicYN="N">Phosphatidylcholines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010718" MajorTopicYN="N">Phosphatidylserines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055672" MajorTopicYN="N">Static Electricity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Envelope protein</Keyword>
<Keyword MajorTopicYN="N">Ion channel</Keyword>
<Keyword MajorTopicYN="N">Lipid charge</Keyword>
<Keyword MajorTopicYN="N">SARS</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>8</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23688394</ArticleId>
<ArticleId IdType="pii">S0005-2736(13)00154-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbamem.2013.05.008</ArticleId>
<ArticleId IdType="pmc">PMC3715572</ArticleId>
<ArticleId IdType="mid">NIHMS482180</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Membr Biol. 1985;84(2):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2582133</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2005 Feb;88(2):1283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2004 Aug;87(2):943-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15298901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22028656</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2007 Nov 25;368(2):296-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692883</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2008 Jul 5;376(2):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452964</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2008 Feb 15;94(4):1194-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17965131</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2012 Oct 25;432(2):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22832120</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2002 Apr;82(4):1985-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11916856</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 1998 Oct;75(4):1783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9746520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4509315</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>FEBS Lett. 2004 Oct 8;576(1-2):205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474038</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Membr Biol. 1992 Feb;125(3):255-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1372939</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Nov;1818(11):2777-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22789813</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Microbiol. 2006;60:211-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16712436</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 1993 Jan;64(1):16-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7679295</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2006 May 19;281(20):14408-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108030</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2006 Aug 1;91(3):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698774</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 1990 Feb 28;1031(1):111-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2155023</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2007 Sep;16(9):2065-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766393</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2011 Jul 5;415(2):69-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21524776</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2004 Dec 5;330(1):322-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527857</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2005 Dec;89(6):4006-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16150963</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 1986 Feb;49(2):459-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3955180</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2005 Nov;89(5):3059-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085767</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2009 Jul;5(7):e1000511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19593379</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7819-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859360</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2009 Jan;96(1):56-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19134471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001195 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001195 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23688394
   |texte=   Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23688394" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021