Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synergistic inhibitor binding to the papain-like protease of human SARS coronavirus: mechanistic and inhibitor design implications.

Identifieur interne : 001179 ( PubMed/Corpus ); précédent : 001178; suivant : 001180

Synergistic inhibitor binding to the papain-like protease of human SARS coronavirus: mechanistic and inhibitor design implications.

Auteurs : Hyun Lee ; Shuyi Cao ; Kirk E. Hevener ; Lena Truong ; Joseph L. Gatuz ; Kavankumar Patel ; Arun K. Ghosh ; Michael E. Johnson

Source :

RBID : pubmed:23788528

English descriptors

Abstract

We previously developed two potent chemical classes that inhibit the essential papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus. In this study, we applied a novel approach to identify small fragments that act synergistically with these inhibitors. A fragment library was screened in combination with four previously developed lead inhibitors by fluorescence-based enzymatic assays. Several fragment compounds synergistically enhanced the inhibitory activity of the lead inhibitors by approximately an order of magnitude. Surface plasmon resonance measurements showed that three fragments bind specifically to the PLpro enzyme. Mode of inhibition, computational solvent mapping, and molecular docking studies suggest that these fragments bind adjacent to the binding site of the lead inhibitors and further stabilize the inhibitor-bound state. We propose potential next-generation compounds based on a computational fragment-merging approach. This approach provides an alternative strategy for lead optimization for cases in which direct co-crystallization is difficult.

DOI: 10.1002/cmdc.201300134
PubMed: 23788528

Links to Exploration step

pubmed:23788528

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synergistic inhibitor binding to the papain-like protease of human SARS coronavirus: mechanistic and inhibitor design implications.</title>
<author>
<name sortKey="Lee, Hyun" sort="Lee, Hyun" uniqKey="Lee H" first="Hyun" last="Lee">Hyun Lee</name>
<affiliation>
<nlm:affiliation>Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cao, Shuyi" sort="Cao, Shuyi" uniqKey="Cao S" first="Shuyi" last="Cao">Shuyi Cao</name>
</author>
<author>
<name sortKey="Hevener, Kirk E" sort="Hevener, Kirk E" uniqKey="Hevener K" first="Kirk E" last="Hevener">Kirk E. Hevener</name>
</author>
<author>
<name sortKey="Truong, Lena" sort="Truong, Lena" uniqKey="Truong L" first="Lena" last="Truong">Lena Truong</name>
</author>
<author>
<name sortKey="Gatuz, Joseph L" sort="Gatuz, Joseph L" uniqKey="Gatuz J" first="Joseph L" last="Gatuz">Joseph L. Gatuz</name>
</author>
<author>
<name sortKey="Patel, Kavankumar" sort="Patel, Kavankumar" uniqKey="Patel K" first="Kavankumar" last="Patel">Kavankumar Patel</name>
</author>
<author>
<name sortKey="Ghosh, Arun K" sort="Ghosh, Arun K" uniqKey="Ghosh A" first="Arun K" last="Ghosh">Arun K. Ghosh</name>
</author>
<author>
<name sortKey="Johnson, Michael E" sort="Johnson, Michael E" uniqKey="Johnson M" first="Michael E" last="Johnson">Michael E. Johnson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23788528</idno>
<idno type="pmid">23788528</idno>
<idno type="doi">10.1002/cmdc.201300134</idno>
<idno type="wicri:Area/PubMed/Corpus">001179</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001179</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synergistic inhibitor binding to the papain-like protease of human SARS coronavirus: mechanistic and inhibitor design implications.</title>
<author>
<name sortKey="Lee, Hyun" sort="Lee, Hyun" uniqKey="Lee H" first="Hyun" last="Lee">Hyun Lee</name>
<affiliation>
<nlm:affiliation>Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cao, Shuyi" sort="Cao, Shuyi" uniqKey="Cao S" first="Shuyi" last="Cao">Shuyi Cao</name>
</author>
<author>
<name sortKey="Hevener, Kirk E" sort="Hevener, Kirk E" uniqKey="Hevener K" first="Kirk E" last="Hevener">Kirk E. Hevener</name>
</author>
<author>
<name sortKey="Truong, Lena" sort="Truong, Lena" uniqKey="Truong L" first="Lena" last="Truong">Lena Truong</name>
</author>
<author>
<name sortKey="Gatuz, Joseph L" sort="Gatuz, Joseph L" uniqKey="Gatuz J" first="Joseph L" last="Gatuz">Joseph L. Gatuz</name>
</author>
<author>
<name sortKey="Patel, Kavankumar" sort="Patel, Kavankumar" uniqKey="Patel K" first="Kavankumar" last="Patel">Kavankumar Patel</name>
</author>
<author>
<name sortKey="Ghosh, Arun K" sort="Ghosh, Arun K" uniqKey="Ghosh A" first="Arun K" last="Ghosh">Arun K. Ghosh</name>
</author>
<author>
<name sortKey="Johnson, Michael E" sort="Johnson, Michael E" uniqKey="Johnson M" first="Michael E" last="Johnson">Michael E. Johnson</name>
</author>
</analytic>
<series>
<title level="j">ChemMedChem</title>
<idno type="eISSN">1860-7187</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiviral Agents (chemistry)</term>
<term>Antiviral Agents (metabolism)</term>
<term>Binding Sites</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Drug Design</term>
<term>Drug Synergism</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Molecular Docking Simulation</term>
<term>Protease Inhibitors (chemistry)</term>
<term>Protease Inhibitors (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>SARS Virus (enzymology)</term>
<term>Small Molecule Libraries (chemistry)</term>
<term>Small Molecule Libraries (metabolism)</term>
<term>Surface Plasmon Resonance</term>
<term>Viral Proteins (antagonists & inhibitors)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antiviral Agents</term>
<term>Protease Inhibitors</term>
<term>Small Molecule Libraries</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antiviral Agents</term>
<term>Cysteine Endopeptidases</term>
<term>Protease Inhibitors</term>
<term>Small Molecule Libraries</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Drug Design</term>
<term>Drug Synergism</term>
<term>Humans</term>
<term>Kinetics</term>
<term>Molecular Docking Simulation</term>
<term>Protein Binding</term>
<term>Protein Structure, Tertiary</term>
<term>Surface Plasmon Resonance</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We previously developed two potent chemical classes that inhibit the essential papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus. In this study, we applied a novel approach to identify small fragments that act synergistically with these inhibitors. A fragment library was screened in combination with four previously developed lead inhibitors by fluorescence-based enzymatic assays. Several fragment compounds synergistically enhanced the inhibitory activity of the lead inhibitors by approximately an order of magnitude. Surface plasmon resonance measurements showed that three fragments bind specifically to the PLpro enzyme. Mode of inhibition, computational solvent mapping, and molecular docking studies suggest that these fragments bind adjacent to the binding site of the lead inhibitors and further stabilize the inhibitor-bound state. We propose potential next-generation compounds based on a computational fragment-merging approach. This approach provides an alternative strategy for lead optimization for cases in which direct co-crystallization is difficult. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23788528</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1860-7187</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>ChemMedChem</Title>
<ISOAbbreviation>ChemMedChem</ISOAbbreviation>
</Journal>
<ArticleTitle>Synergistic inhibitor binding to the papain-like protease of human SARS coronavirus: mechanistic and inhibitor design implications.</ArticleTitle>
<Pagination>
<MedlinePgn>1361-72</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/cmdc.201300134</ELocationID>
<Abstract>
<AbstractText>We previously developed two potent chemical classes that inhibit the essential papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus. In this study, we applied a novel approach to identify small fragments that act synergistically with these inhibitors. A fragment library was screened in combination with four previously developed lead inhibitors by fluorescence-based enzymatic assays. Several fragment compounds synergistically enhanced the inhibitory activity of the lead inhibitors by approximately an order of magnitude. Surface plasmon resonance measurements showed that three fragments bind specifically to the PLpro enzyme. Mode of inhibition, computational solvent mapping, and molecular docking studies suggest that these fragments bind adjacent to the binding site of the lead inhibitors and further stabilize the inhibitor-bound state. We propose potential next-generation compounds based on a computational fragment-merging approach. This approach provides an alternative strategy for lead optimization for cases in which direct co-crystallization is difficult. </AbstractText>
<CopyrightInformation>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Hyun</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry & Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Shuyi</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hevener</LastName>
<ForeName>Kirk E</ForeName>
<Initials>KE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Truong</LastName>
<ForeName>Lena</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gatuz</LastName>
<ForeName>Joseph L</ForeName>
<Initials>JL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Patel</LastName>
<ForeName>Kavankumar</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Arun K</ForeName>
<Initials>AK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Michael E</ForeName>
<Initials>ME</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R56 AI089535</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5T32-DE018381</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 DE018381</GrantID>
<Acronym>DE</Acronym>
<Agency>NIDCR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 RR001081</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 GM053386</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>ChemMedChem</MedlineTA>
<NlmUniqueID>101259013</NlmUniqueID>
<ISSNLinking>1860-7179</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011480">Protease Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054852">Small Molecule Libraries</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015195" MajorTopicYN="Y">Drug Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004357" MajorTopicYN="N">Drug Synergism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011480" MajorTopicYN="N">Protease Inhibitors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054852" MajorTopicYN="N">Small Molecule Libraries</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020349" MajorTopicYN="N">Surface Plasmon Resonance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">fragments</Keyword>
<Keyword MajorTopicYN="N">human SARS coronavirus</Keyword>
<Keyword MajorTopicYN="N">inhibitors</Keyword>
<Keyword MajorTopicYN="N">papain-like protease</Keyword>
<Keyword MajorTopicYN="N">small molecules</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>05</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23788528</ArticleId>
<ArticleId IdType="doi">10.1002/cmdc.201300134</ArticleId>
<ArticleId IdType="pmc">PMC3954986</ArticleId>
<ArticleId IdType="mid">NIHMS525664</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2006 Oct 19;49(21):6177-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17034125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph Model. 2006 Oct;25(2):247-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16458552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2005 Jun 30;48(13):4469-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15974598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(7):3051-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2002 Dec;23(16):1623-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12395429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Microbiol. 2011 Feb;6(2):153-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21366416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2006 Nov 15;65(3):712-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16981200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012;17(40):20290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Jul 15;25(9):1157-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15116359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2008 Apr 15;75(8):1601-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18313035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2010 Aug;20(4):497-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20471246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2005 Nov 3;48(22):6767-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16250632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2010 Feb 11;53(3):942-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20043700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2012 Sep 11;8(9):3314-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26605738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2004 Jul 16;14(14):3655-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15203137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):13600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2009 Aug 27;52(16):5228-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19645480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharm Res. 1997 May;14(5):568-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2010 Oct;15(19-20):804-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20727982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virol. 2011;2011:129134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22315599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2010 Jul 8;53(13):4968-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20527968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2000 Oct 19;43(21):3867-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11052792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2012 Apr 12;55(7):3285-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22417091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18852458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2008 Oct 15;18(20):5684-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18796354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6212-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2007 Nov 1;17(21):5876-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Nov 29;274(5292):1531-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8929414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Des. 2006;12(35):4573-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17168763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2004 Dec 2;47(25):6113-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15566280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22589414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2012 May;33(5):224-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22459076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2005 Apr 1;10(7):464-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2000 Oct 5;43(20):3714-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11020286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Pharm Bull. 2012;35(11):2036-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22971649</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001179 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001179 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23788528
   |texte=   Synergistic inhibitor binding to the papain-like protease of human SARS coronavirus: mechanistic and inhibitor design implications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23788528" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021