Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury.

Identifieur interne : 001152 ( PubMed/Corpus ); précédent : 001151; suivant : 001153

Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury.

Auteurs : Lisa E. Gralinski ; Armand Bankhead ; Sophia Jeng ; Vineet D. Menachery ; Sean Proll ; Sarah E. Belisle ; Melissa Matzke ; Bobbie-Jo M. Webb-Robertson ; Maria L. Luna ; Anil K. Shukla ; Martin T. Ferris ; Meagan Bolles ; Jean Chang ; Lauri Aicher ; Katrina M. Waters ; Richard D. Smith ; Thomas O. Metz ; G Lynn Law ; Michael G. Katze ; Shannon Mcweeney ; Ralph S. Baric

Source :

RBID : pubmed:23919993

English descriptors

Abstract

Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV.

DOI: 10.1128/mBio.00271-13
PubMed: 23919993

Links to Exploration step

pubmed:23919993

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury.</title>
<author>
<name sortKey="Gralinski, Lisa E" sort="Gralinski, Lisa E" uniqKey="Gralinski L" first="Lisa E" last="Gralinski">Lisa E. Gralinski</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bankhead, Armand" sort="Bankhead, Armand" uniqKey="Bankhead A" first="Armand" last="Bankhead">Armand Bankhead</name>
</author>
<author>
<name sortKey="Jeng, Sophia" sort="Jeng, Sophia" uniqKey="Jeng S" first="Sophia" last="Jeng">Sophia Jeng</name>
</author>
<author>
<name sortKey="Menachery, Vineet D" sort="Menachery, Vineet D" uniqKey="Menachery V" first="Vineet D" last="Menachery">Vineet D. Menachery</name>
</author>
<author>
<name sortKey="Proll, Sean" sort="Proll, Sean" uniqKey="Proll S" first="Sean" last="Proll">Sean Proll</name>
</author>
<author>
<name sortKey="Belisle, Sarah E" sort="Belisle, Sarah E" uniqKey="Belisle S" first="Sarah E" last="Belisle">Sarah E. Belisle</name>
</author>
<author>
<name sortKey="Matzke, Melissa" sort="Matzke, Melissa" uniqKey="Matzke M" first="Melissa" last="Matzke">Melissa Matzke</name>
</author>
<author>
<name sortKey="Webb Robertson, Bobbie Jo M" sort="Webb Robertson, Bobbie Jo M" uniqKey="Webb Robertson B" first="Bobbie-Jo M" last="Webb-Robertson">Bobbie-Jo M. Webb-Robertson</name>
</author>
<author>
<name sortKey="Luna, Maria L" sort="Luna, Maria L" uniqKey="Luna M" first="Maria L" last="Luna">Maria L. Luna</name>
</author>
<author>
<name sortKey="Shukla, Anil K" sort="Shukla, Anil K" uniqKey="Shukla A" first="Anil K" last="Shukla">Anil K. Shukla</name>
</author>
<author>
<name sortKey="Ferris, Martin T" sort="Ferris, Martin T" uniqKey="Ferris M" first="Martin T" last="Ferris">Martin T. Ferris</name>
</author>
<author>
<name sortKey="Bolles, Meagan" sort="Bolles, Meagan" uniqKey="Bolles M" first="Meagan" last="Bolles">Meagan Bolles</name>
</author>
<author>
<name sortKey="Chang, Jean" sort="Chang, Jean" uniqKey="Chang J" first="Jean" last="Chang">Jean Chang</name>
</author>
<author>
<name sortKey="Aicher, Lauri" sort="Aicher, Lauri" uniqKey="Aicher L" first="Lauri" last="Aicher">Lauri Aicher</name>
</author>
<author>
<name sortKey="Waters, Katrina M" sort="Waters, Katrina M" uniqKey="Waters K" first="Katrina M" last="Waters">Katrina M. Waters</name>
</author>
<author>
<name sortKey="Smith, Richard D" sort="Smith, Richard D" uniqKey="Smith R" first="Richard D" last="Smith">Richard D. Smith</name>
</author>
<author>
<name sortKey="Metz, Thomas O" sort="Metz, Thomas O" uniqKey="Metz T" first="Thomas O" last="Metz">Thomas O. Metz</name>
</author>
<author>
<name sortKey="Law, G Lynn" sort="Law, G Lynn" uniqKey="Law G" first="G Lynn" last="Law">G Lynn Law</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
<author>
<name sortKey="Mcweeney, Shannon" sort="Mcweeney, Shannon" uniqKey="Mcweeney S" first="Shannon" last="Mcweeney">Shannon Mcweeney</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23919993</idno>
<idno type="pmid">23919993</idno>
<idno type="doi">10.1128/mBio.00271-13</idno>
<idno type="wicri:Area/PubMed/Corpus">001152</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001152</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury.</title>
<author>
<name sortKey="Gralinski, Lisa E" sort="Gralinski, Lisa E" uniqKey="Gralinski L" first="Lisa E" last="Gralinski">Lisa E. Gralinski</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bankhead, Armand" sort="Bankhead, Armand" uniqKey="Bankhead A" first="Armand" last="Bankhead">Armand Bankhead</name>
</author>
<author>
<name sortKey="Jeng, Sophia" sort="Jeng, Sophia" uniqKey="Jeng S" first="Sophia" last="Jeng">Sophia Jeng</name>
</author>
<author>
<name sortKey="Menachery, Vineet D" sort="Menachery, Vineet D" uniqKey="Menachery V" first="Vineet D" last="Menachery">Vineet D. Menachery</name>
</author>
<author>
<name sortKey="Proll, Sean" sort="Proll, Sean" uniqKey="Proll S" first="Sean" last="Proll">Sean Proll</name>
</author>
<author>
<name sortKey="Belisle, Sarah E" sort="Belisle, Sarah E" uniqKey="Belisle S" first="Sarah E" last="Belisle">Sarah E. Belisle</name>
</author>
<author>
<name sortKey="Matzke, Melissa" sort="Matzke, Melissa" uniqKey="Matzke M" first="Melissa" last="Matzke">Melissa Matzke</name>
</author>
<author>
<name sortKey="Webb Robertson, Bobbie Jo M" sort="Webb Robertson, Bobbie Jo M" uniqKey="Webb Robertson B" first="Bobbie-Jo M" last="Webb-Robertson">Bobbie-Jo M. Webb-Robertson</name>
</author>
<author>
<name sortKey="Luna, Maria L" sort="Luna, Maria L" uniqKey="Luna M" first="Maria L" last="Luna">Maria L. Luna</name>
</author>
<author>
<name sortKey="Shukla, Anil K" sort="Shukla, Anil K" uniqKey="Shukla A" first="Anil K" last="Shukla">Anil K. Shukla</name>
</author>
<author>
<name sortKey="Ferris, Martin T" sort="Ferris, Martin T" uniqKey="Ferris M" first="Martin T" last="Ferris">Martin T. Ferris</name>
</author>
<author>
<name sortKey="Bolles, Meagan" sort="Bolles, Meagan" uniqKey="Bolles M" first="Meagan" last="Bolles">Meagan Bolles</name>
</author>
<author>
<name sortKey="Chang, Jean" sort="Chang, Jean" uniqKey="Chang J" first="Jean" last="Chang">Jean Chang</name>
</author>
<author>
<name sortKey="Aicher, Lauri" sort="Aicher, Lauri" uniqKey="Aicher L" first="Lauri" last="Aicher">Lauri Aicher</name>
</author>
<author>
<name sortKey="Waters, Katrina M" sort="Waters, Katrina M" uniqKey="Waters K" first="Katrina M" last="Waters">Katrina M. Waters</name>
</author>
<author>
<name sortKey="Smith, Richard D" sort="Smith, Richard D" uniqKey="Smith R" first="Richard D" last="Smith">Richard D. Smith</name>
</author>
<author>
<name sortKey="Metz, Thomas O" sort="Metz, Thomas O" uniqKey="Metz T" first="Thomas O" last="Metz">Thomas O. Metz</name>
</author>
<author>
<name sortKey="Law, G Lynn" sort="Law, G Lynn" uniqKey="Law G" first="G Lynn" last="Law">G Lynn Law</name>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G" last="Katze">Michael G. Katze</name>
</author>
<author>
<name sortKey="Mcweeney, Shannon" sort="Mcweeney, Shannon" uniqKey="Mcweeney S" first="Shannon" last="Mcweeney">Shannon Mcweeney</name>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acute Lung Injury (pathology)</term>
<term>Acute Lung Injury (virology)</term>
<term>Animals</term>
<term>Blood Coagulation</term>
<term>Disease Models, Animal</term>
<term>Fibrinolysis</term>
<term>Gene Expression Profiling</term>
<term>Host-Pathogen Interactions</term>
<term>Lung (pathology)</term>
<term>Lung (virology)</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Proteome (analysis)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Time Factors</term>
<term>Urokinase-Type Plasminogen Activator (genetics)</term>
<term>Urokinase-Type Plasminogen Activator (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Urokinase-Type Plasminogen Activator</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Urokinase-Type Plasminogen Activator</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Acute Lung Injury</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Acute Lung Injury</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Blood Coagulation</term>
<term>Disease Models, Animal</term>
<term>Fibrinolysis</term>
<term>Gene Expression Profiling</term>
<term>Host-Pathogen Interactions</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Knockout</term>
<term>Time Factors</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23919993</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
<Month>Aug</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.00271-13</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e00271-13</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and 2003, and infected patients developed an atypical pneumonia, acute lung injury (ALI), and acute respiratory distress syndrome (ARDS) leading to pulmonary fibrosis and death. We identified sets of differentially expressed genes that contribute to ALI and ARDS using lethal and sublethal SARS-CoV infection models. Mathematical prioritization of our gene sets identified the urokinase and extracellular matrix remodeling pathways as the most enriched pathways. By infecting Serpine1-knockout mice, we showed that the urokinase pathway had a significant effect on both lung pathology and overall SARS-CoV pathogenesis. These results demonstrate the effective use of unbiased modeling techniques for identification of high-priority host targets that regulate disease outcomes. Similar transcriptional signatures were noted in 1918 and 2009 H1N1 influenza virus-infected mice, suggesting a common, potentially treatable mechanism in development of virus-induced ALI.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gralinski</LastName>
<ForeName>Lisa E</ForeName>
<Initials>LE</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bankhead</LastName>
<ForeName>Armand</ForeName>
<Initials>A</Initials>
<Suffix>3rd</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Jeng</LastName>
<ForeName>Sophia</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Menachery</LastName>
<ForeName>Vineet D</ForeName>
<Initials>VD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Proll</LastName>
<ForeName>Sean</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Belisle</LastName>
<ForeName>Sarah E</ForeName>
<Initials>SE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Matzke</LastName>
<ForeName>Melissa</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Webb-Robertson</LastName>
<ForeName>Bobbie-Jo M</ForeName>
<Initials>BJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Luna</LastName>
<ForeName>Maria L</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shukla</LastName>
<ForeName>Anil K</ForeName>
<Initials>AK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ferris</LastName>
<ForeName>Martin T</ForeName>
<Initials>MT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bolles</LastName>
<ForeName>Meagan</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chang</LastName>
<ForeName>Jean</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aicher</LastName>
<ForeName>Lauri</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Waters</LastName>
<ForeName>Katrina M</ForeName>
<Initials>KM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Richard D</ForeName>
<Initials>RD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Metz</LastName>
<ForeName>Thomas O</ForeName>
<Initials>TO</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Law</LastName>
<ForeName>G Lynn</ForeName>
<Initials>GL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Katze</LastName>
<ForeName>Michael G</ForeName>
<Initials>MG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McWeeney</LastName>
<ForeName>Shannon</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P41 GM103493</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008719</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>UL1 RR024140</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5UL1RR024140</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>8 P41 GM103493-10</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN272200800060C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.73</RegistryNumber>
<NameOfSubstance UI="D014568">Urokinase-Type Plasminogen Activator</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055371" MajorTopicYN="N">Acute Lung Injury</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001777" MajorTopicYN="N">Blood Coagulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005342" MajorTopicYN="N">Fibrinolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014568" MajorTopicYN="N">Urokinase-Type Plasminogen Activator</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23919993</ArticleId>
<ArticleId IdType="pii">mBio.00271-13</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.00271-13</ArticleId>
<ArticleId IdType="pmc">PMC3747576</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2011 Dec;121(12):4921-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22105170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Dec;4(12):e1000240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jan 26;315(5811):509-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17255510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2012;3:771</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22491319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Infect Dis. 2004 May 15;38(10):1420-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15156481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jul;81(14):7410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Dec;3(12):e525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;541:1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19381547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr;6(4):e1000849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(8):e2985</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2010 Oct;8(10):717-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20805835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1989 Aug;84(2):695-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2788176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chin Med Assoc. 2005 Jan;68(1):4-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15742856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thromb Haemost. 2008 Mar;99(3):494-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18327397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2009 Oct;297(4):L559-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19525387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Assoc Physicians India. 2011 Aug;59:498-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21887906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pathol Lab Med. 1976 Mar;100(3):147-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">946402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1999 Sep;277(3 Pt 1):L573-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10484465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17402-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17090670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2005 Nov;167(5):1221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care. 1998;2(1):29-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11056707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008;4(8):e1000115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18670648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Pathol. 2003 Aug;34(8):743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14506633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Mar 22;227(4693):1487-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4038818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respirology. 2003 Nov;8 Suppl:S6-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15018126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Rev Respir Dis. 1989 Aug;140(2):513-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2669580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2011 Aug;301(2):L247-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thromb Res. 2012 Oct;130(4):576-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22801256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Pathol. 2010 Jul;134(1):27-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20551263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Aug 10;3(8):e112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Dis Child. 1964 Jun;39:226-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14169450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clinics (Sao Paulo). 2006 Dec;61(6):497-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17187083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002099</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21731493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thromb Haemost. 2006 Jul;96(1):100-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16807662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Mar 1;24(5):719-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 1996 Jan;14(1):53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8534486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2009 Jan;10(1):116-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2003 Jul;200(3):282-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12845623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010;11:170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20370926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Haematol. 2005 May;129(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15842654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2005;4:Article17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respiration. 2005 May-Jun;72(3):263-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15942295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 May 24;361(9371):1773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12781536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2007;1:54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18031580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thorax. 2005 May;60(5):401-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Am Thorac Soc. 2006 Jun;3(4):383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16738205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19619308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Pharmacother. 2011 Mar;45(3):364-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mod Pathol. 2005 Jan;18(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jun 12;20(9):1464-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14962934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Paediatr Respir Rev. 2001 Jun;2(2):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12531062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 2011 Nov;45(5):1015-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21617202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jpn J Infect Dis. 2008 Mar;61(2):157-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18362412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2011 Aug;12(8):786-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2010 May 6;362(18):1708-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20445182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Intensive Care Med. 2005 Jan-Feb;20(1):43-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15665259</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001152 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001152 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23919993
   |texte=   Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23919993" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021