Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The antiviral activity of poly-γ-glutamic acid, a polypeptide secreted by Bacillus sp., through induction of CD14-dependent type I interferon responses.

Identifieur interne : 001130 ( PubMed/Corpus ); précédent : 001129; suivant : 001131

The antiviral activity of poly-γ-glutamic acid, a polypeptide secreted by Bacillus sp., through induction of CD14-dependent type I interferon responses.

Auteurs : Wooseong Lee ; Seung-Hoon Lee ; Dae-Gyun Ahn ; Hee Cho ; Moon-Hee Sung ; Seung Hyun Han ; Jong-Won Oh

Source :

RBID : pubmed:24016850

English descriptors

Abstract

Poly-γ-glutamic acid (γ-PGA) is an anionic polypeptide secreted by Bacillus sp. that has been shown to activate immune cells through interactions with toll-like receptor 4 (TLR4). However, its ability to induce the type I interferon (IFN) response has not yet been characterized. Here, we demonstrate that γ-PGA induces type I IFN signaling pathway via the TLR4 signaling pathway. The induction required both myeloid differentiation factor 2 (MD2) and the pattern-recognition receptor CD14, which are two TLR4-associated accessory proteins. The γ-PGA with high molecular weights (2000 and 5000 kDa) was able to activate the subsequent signals through TLR4/MD2 to result in dimerization of IRF-3, a transcription factor required for IFN gene expression, leading to increases in mRNA levels of the type I IFN-response genes, 2'-5' OAS and ISG56. Moreover, γ-PGA (2000 kDa) displayed an antiviral activity against SARS coronavirus and hepatitis C virus. Our results identify high-molecular weight γ-PGA as a TLR4 ligand and demonstrate that γ-PGA requires both CD14 and MD2 for the activation of type I IFN responses. Our results suggest that the microbial biopolymer γ-PGA may have therapeutic potential against a broad range of viruses sensitive to type I IFNs.

DOI: 10.1016/j.biomaterials.2013.08.067
PubMed: 24016850

Links to Exploration step

pubmed:24016850

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The antiviral activity of poly-γ-glutamic acid, a polypeptide secreted by Bacillus sp., through induction of CD14-dependent type I interferon responses.</title>
<author>
<name sortKey="Lee, Wooseong" sort="Lee, Wooseong" uniqKey="Lee W" first="Wooseong" last="Lee">Wooseong Lee</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Center for Protein Function Control, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Seung Hoon" sort="Lee, Seung Hoon" uniqKey="Lee S" first="Seung-Hoon" last="Lee">Seung-Hoon Lee</name>
</author>
<author>
<name sortKey="Ahn, Dae Gyun" sort="Ahn, Dae Gyun" uniqKey="Ahn D" first="Dae-Gyun" last="Ahn">Dae-Gyun Ahn</name>
</author>
<author>
<name sortKey="Cho, Hee" sort="Cho, Hee" uniqKey="Cho H" first="Hee" last="Cho">Hee Cho</name>
</author>
<author>
<name sortKey="Sung, Moon Hee" sort="Sung, Moon Hee" uniqKey="Sung M" first="Moon-Hee" last="Sung">Moon-Hee Sung</name>
</author>
<author>
<name sortKey="Han, Seung Hyun" sort="Han, Seung Hyun" uniqKey="Han S" first="Seung Hyun" last="Han">Seung Hyun Han</name>
</author>
<author>
<name sortKey="Oh, Jong Won" sort="Oh, Jong Won" uniqKey="Oh J" first="Jong-Won" last="Oh">Jong-Won Oh</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24016850</idno>
<idno type="pmid">24016850</idno>
<idno type="doi">10.1016/j.biomaterials.2013.08.067</idno>
<idno type="wicri:Area/PubMed/Corpus">001130</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001130</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The antiviral activity of poly-γ-glutamic acid, a polypeptide secreted by Bacillus sp., through induction of CD14-dependent type I interferon responses.</title>
<author>
<name sortKey="Lee, Wooseong" sort="Lee, Wooseong" uniqKey="Lee W" first="Wooseong" last="Lee">Wooseong Lee</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Center for Protein Function Control, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Seung Hoon" sort="Lee, Seung Hoon" uniqKey="Lee S" first="Seung-Hoon" last="Lee">Seung-Hoon Lee</name>
</author>
<author>
<name sortKey="Ahn, Dae Gyun" sort="Ahn, Dae Gyun" uniqKey="Ahn D" first="Dae-Gyun" last="Ahn">Dae-Gyun Ahn</name>
</author>
<author>
<name sortKey="Cho, Hee" sort="Cho, Hee" uniqKey="Cho H" first="Hee" last="Cho">Hee Cho</name>
</author>
<author>
<name sortKey="Sung, Moon Hee" sort="Sung, Moon Hee" uniqKey="Sung M" first="Moon-Hee" last="Sung">Moon-Hee Sung</name>
</author>
<author>
<name sortKey="Han, Seung Hyun" sort="Han, Seung Hyun" uniqKey="Han S" first="Seung Hyun" last="Han">Seung Hyun Han</name>
</author>
<author>
<name sortKey="Oh, Jong Won" sort="Oh, Jong Won" uniqKey="Oh J" first="Jong-Won" last="Oh">Jong-Won Oh</name>
</author>
</analytic>
<series>
<title level="j">Biomaterials</title>
<idno type="eISSN">1878-5905</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antiviral Agents (metabolism)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>Bacillus (metabolism)</term>
<term>Cell Line</term>
<term>HEK293 Cells</term>
<term>Hepacivirus (drug effects)</term>
<term>Hepatitis C (drug therapy)</term>
<term>Humans</term>
<term>Interferon Type I (immunology)</term>
<term>Lipopolysaccharide Receptors (immunology)</term>
<term>Mice</term>
<term>Polyglutamic Acid (analogs & derivatives)</term>
<term>Polyglutamic Acid (metabolism)</term>
<term>Polyglutamic Acid (therapeutic use)</term>
<term>SARS Virus (drug effects)</term>
<term>Severe Acute Respiratory Syndrome (drug therapy)</term>
<term>Toll-Like Receptor 4 (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Polyglutamic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Interferon Type I</term>
<term>Lipopolysaccharide Receptors</term>
<term>Toll-Like Receptor 4</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antiviral Agents</term>
<term>Polyglutamic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antiviral Agents</term>
<term>Polyglutamic Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Hepacivirus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Hepatitis C</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacillus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Mice</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Poly-γ-glutamic acid (γ-PGA) is an anionic polypeptide secreted by Bacillus sp. that has been shown to activate immune cells through interactions with toll-like receptor 4 (TLR4). However, its ability to induce the type I interferon (IFN) response has not yet been characterized. Here, we demonstrate that γ-PGA induces type I IFN signaling pathway via the TLR4 signaling pathway. The induction required both myeloid differentiation factor 2 (MD2) and the pattern-recognition receptor CD14, which are two TLR4-associated accessory proteins. The γ-PGA with high molecular weights (2000 and 5000 kDa) was able to activate the subsequent signals through TLR4/MD2 to result in dimerization of IRF-3, a transcription factor required for IFN gene expression, leading to increases in mRNA levels of the type I IFN-response genes, 2'-5' OAS and ISG56. Moreover, γ-PGA (2000 kDa) displayed an antiviral activity against SARS coronavirus and hepatitis C virus. Our results identify high-molecular weight γ-PGA as a TLR4 ligand and demonstrate that γ-PGA requires both CD14 and MD2 for the activation of type I IFN responses. Our results suggest that the microbial biopolymer γ-PGA may have therapeutic potential against a broad range of viruses sensitive to type I IFNs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24016850</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1878-5905</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>37</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Biomaterials</Title>
<ISOAbbreviation>Biomaterials</ISOAbbreviation>
</Journal>
<ArticleTitle>The antiviral activity of poly-γ-glutamic acid, a polypeptide secreted by Bacillus sp., through induction of CD14-dependent type I interferon responses.</ArticleTitle>
<Pagination>
<MedlinePgn>9700-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.biomaterials.2013.08.067</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0142-9612(13)01030-2</ELocationID>
<Abstract>
<AbstractText>Poly-γ-glutamic acid (γ-PGA) is an anionic polypeptide secreted by Bacillus sp. that has been shown to activate immune cells through interactions with toll-like receptor 4 (TLR4). However, its ability to induce the type I interferon (IFN) response has not yet been characterized. Here, we demonstrate that γ-PGA induces type I IFN signaling pathway via the TLR4 signaling pathway. The induction required both myeloid differentiation factor 2 (MD2) and the pattern-recognition receptor CD14, which are two TLR4-associated accessory proteins. The γ-PGA with high molecular weights (2000 and 5000 kDa) was able to activate the subsequent signals through TLR4/MD2 to result in dimerization of IRF-3, a transcription factor required for IFN gene expression, leading to increases in mRNA levels of the type I IFN-response genes, 2'-5' OAS and ISG56. Moreover, γ-PGA (2000 kDa) displayed an antiviral activity against SARS coronavirus and hepatitis C virus. Our results identify high-molecular weight γ-PGA as a TLR4 ligand and demonstrate that γ-PGA requires both CD14 and MD2 for the activation of type I IFN responses. Our results suggest that the microbial biopolymer γ-PGA may have therapeutic potential against a broad range of viruses sensitive to type I IFNs.</AbstractText>
<CopyrightInformation>Copyright © 2013 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Wooseong</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Center for Protein Function Control, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Seung-Hoon</ForeName>
<Initials>SH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ahn</LastName>
<ForeName>Dae-Gyun</ForeName>
<Initials>DG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cho</LastName>
<ForeName>Hee</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sung</LastName>
<ForeName>Moon-Hee</ForeName>
<Initials>MH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Seung Hyun</ForeName>
<Initials>SH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oh</LastName>
<ForeName>Jong-Won</ForeName>
<Initials>JW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biomaterials</MedlineTA>
<NlmUniqueID>8100316</NlmUniqueID>
<ISSNLinking>0142-9612</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007370">Interferon Type I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018950">Lipopolysaccharide Receptors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051197">Toll-Like Receptor 4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C511775">poly(gamma-glutamic acid)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>25513-46-6</RegistryNumber>
<NameOfSubstance UI="D011099">Polyglutamic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001407" MajorTopicYN="N">Bacillus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016174" MajorTopicYN="N">Hepacivirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006526" MajorTopicYN="N">Hepatitis C</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007370" MajorTopicYN="N">Interferon Type I</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018950" MajorTopicYN="N">Lipopolysaccharide Receptors</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011099" MajorTopicYN="N">Polyglutamic Acid</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051197" MajorTopicYN="N">Toll-Like Receptor 4</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antiviral agent</Keyword>
<Keyword MajorTopicYN="N">Hepatitis C virus</Keyword>
<Keyword MajorTopicYN="N">Interferon</Keyword>
<Keyword MajorTopicYN="N">Poly-γ-glutamic acid</Keyword>
<Keyword MajorTopicYN="N">SARS coronavirus</Keyword>
<Keyword MajorTopicYN="N">TLR4</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24016850</ArticleId>
<ArticleId IdType="pii">S0142-9612(13)01030-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.biomaterials.2013.08.067</ArticleId>
<ArticleId IdType="pmc">PMC7112489</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1998 Apr 10;273(15):8680-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9535844</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4186-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15010525</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2011 Nov;92(2):346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21945041</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 1990 Sep 21;249(4975):1431-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1698311</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2000 Jan 15;164(2):558-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10623794</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genes Cells. 2001 Apr;6(4):375-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11318879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Drugs. 2010;70(2):147-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20108989</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1995 Apr 28;270(17):9904-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7537270</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2001 Jan 1;166(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11123271</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2007 May;13(5):543-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17479100</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 2010 Nov 22;207(12):2689-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078886</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biomaterials. 2012 Oct;33(29):7182-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22795851</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biomaterials. 2011 Aug;32(22):5206-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21492934</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2008 Jul;8(7):559-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18575461</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Control Release. 2005 Nov 28;108(2-3):226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16125267</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Rec. 2005;5(6):352-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16278834</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Infect Immun. 1998 Nov;66(11):5089-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9784508</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cancer Immunol Immunother. 2009 Nov;58(11):1781-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19294383</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 Apr 26;277(17):15107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842086</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Med. 2006 Feb;3(2):e27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16379499</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2002 Apr;3(4):354-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912497</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Mar 25;280(12):11347-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15644310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2012 Apr;94(1):98-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22401806</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Viral Hepat. 2009 Oct;16(10):697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243496</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2008 May;26(5):561-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18438401</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2011 Feb;155(2):406-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21144873</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Transl Med. 2010 Dec 21;8:138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21172039</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biomaterials. 2012 Apr;33(11):3306-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22281422</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 2008 Jul 7;205(7):1601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18591409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2005 Jun;6(6):565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15895089</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Innate Immun. 2012 Oct;18(5):700-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22330637</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2002 Dec 6;277(49):47834-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324469</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2009 Apr 30;458(7242):1191-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19252480</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 Jan;80(2):866-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16378988</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Diagn Lab Immunol. 2004 May;11(3):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15138173</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Cancer. 2009 Jan;9(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052556</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Jun 15;276(24):21129-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11274165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):293-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892961</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Mar 28;368(1):94-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18222170</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Exp Med. 1999 Jun 7;189(11):1777-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10359581</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunology. 2012 May;136(1):64-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22260507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2008 Apr;9(4):361-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18297073</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2011 Jul;91(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21549154</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Antimicrob Chemother. 2012 Jan;67(1):49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22076990</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2012 Feb 03;12(3):168-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22301850</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cancer Res. 2004 Aug 1;64(15):5461-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289356</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Innate Immun. 2011 Oct;17(5):427-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20682588</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2002;71:635-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045108</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2007 Jul 15;179(2):775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17617566</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2006 Jun 2;125(5):943-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Viral Hepat. 2011 Jul;18(7):e298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21692941</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2000 Oct 15;165(8):4272-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11035061</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2005 Jul;11(7):791-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2002 Sep;17(3):251-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12354379</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2002 Jul;3(7):667-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12055629</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2011 Nov 11;147(4):868-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22078883</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26307-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096514</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001130 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001130 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24016850
   |texte=   The antiviral activity of poly-γ-glutamic acid, a polypeptide secreted by Bacillus sp., through induction of CD14-dependent type I interferon responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24016850" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021