Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.

Identifieur interne : 001128 ( PubMed/Corpus ); précédent : 001127; suivant : 001129

Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.

Auteurs : Christopher C. Stobart ; Nicole R. Sexton ; Havisha Munjal ; Xiaotao Lu ; Katrina L. Molland ; Sakshi Tomar ; Andrew D. Mesecar ; Mark R. Denison

Source :

RBID : pubmed:24027335

English descriptors

Abstract

Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.

DOI: 10.1128/JVI.02050-13
PubMed: 24027335

Links to Exploration step

pubmed:24027335

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.</title>
<author>
<name sortKey="Stobart, Christopher C" sort="Stobart, Christopher C" uniqKey="Stobart C" first="Christopher C" last="Stobart">Christopher C. Stobart</name>
<affiliation>
<nlm:affiliation>Departments of Pathology, Microbiology, and Immunology.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sexton, Nicole R" sort="Sexton, Nicole R" uniqKey="Sexton N" first="Nicole R" last="Sexton">Nicole R. Sexton</name>
</author>
<author>
<name sortKey="Munjal, Havisha" sort="Munjal, Havisha" uniqKey="Munjal H" first="Havisha" last="Munjal">Havisha Munjal</name>
</author>
<author>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
</author>
<author>
<name sortKey="Molland, Katrina L" sort="Molland, Katrina L" uniqKey="Molland K" first="Katrina L" last="Molland">Katrina L. Molland</name>
</author>
<author>
<name sortKey="Tomar, Sakshi" sort="Tomar, Sakshi" uniqKey="Tomar S" first="Sakshi" last="Tomar">Sakshi Tomar</name>
</author>
<author>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D" last="Mesecar">Andrew D. Mesecar</name>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24027335</idno>
<idno type="pmid">24027335</idno>
<idno type="doi">10.1128/JVI.02050-13</idno>
<idno type="wicri:Area/PubMed/Corpus">001128</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001128</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.</title>
<author>
<name sortKey="Stobart, Christopher C" sort="Stobart, Christopher C" uniqKey="Stobart C" first="Christopher C" last="Stobart">Christopher C. Stobart</name>
<affiliation>
<nlm:affiliation>Departments of Pathology, Microbiology, and Immunology.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sexton, Nicole R" sort="Sexton, Nicole R" uniqKey="Sexton N" first="Nicole R" last="Sexton">Nicole R. Sexton</name>
</author>
<author>
<name sortKey="Munjal, Havisha" sort="Munjal, Havisha" uniqKey="Munjal H" first="Havisha" last="Munjal">Havisha Munjal</name>
</author>
<author>
<name sortKey="Lu, Xiaotao" sort="Lu, Xiaotao" uniqKey="Lu X" first="Xiaotao" last="Lu">Xiaotao Lu</name>
</author>
<author>
<name sortKey="Molland, Katrina L" sort="Molland, Katrina L" uniqKey="Molland K" first="Katrina L" last="Molland">Katrina L. Molland</name>
</author>
<author>
<name sortKey="Tomar, Sakshi" sort="Tomar, Sakshi" uniqKey="Tomar S" first="Sakshi" last="Tomar">Sakshi Tomar</name>
</author>
<author>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D" last="Mesecar">Andrew D. Mesecar</name>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Chimera (classification)</term>
<term>Chimera (genetics)</term>
<term>Chimera (metabolism)</term>
<term>Chimera (physiology)</term>
<term>Conserved Sequence</term>
<term>Coronavirus (chemistry)</term>
<term>Coronavirus (classification)</term>
<term>Coronavirus (enzymology)</term>
<term>Coronavirus (genetics)</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Coronavirus Infections (virology)</term>
<term>Cricetinae</term>
<term>Evolution, Molecular</term>
<term>Humans</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Peptide Hydrolases (chemistry)</term>
<term>Peptide Hydrolases (genetics)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptide Hydrolases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Chimera</term>
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chimera</term>
<term>Coronavirus</term>
<term>Peptide Hydrolases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Chimera</term>
<term>Peptide Hydrolases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Chimera</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Conserved Sequence</term>
<term>Cricetinae</term>
<term>Evolution, Molecular</term>
<term>Humans</term>
<term>Mice</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24027335</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>87</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.</ArticleTitle>
<Pagination>
<MedlinePgn>12611-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.02050-13</ELocationID>
<Abstract>
<AbstractText>Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stobart</LastName>
<ForeName>Christopher C</ForeName>
<Initials>CC</Initials>
<AffiliationInfo>
<Affiliation>Departments of Pathology, Microbiology, and Immunology.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sexton</LastName>
<ForeName>Nicole R</ForeName>
<Initials>NR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Munjal</LastName>
<ForeName>Havisha</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Xiaotao</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Molland</LastName>
<ForeName>Katrina L</ForeName>
<Initials>KL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tomar</LastName>
<ForeName>Sakshi</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mesecar</LastName>
<ForeName>Andrew D</ForeName>
<Initials>AD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Denison</LastName>
<ForeName>Mark R</ForeName>
<Initials>MR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI026603</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 AI089554</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AI26603</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="Y">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="N">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24027335</ArticleId>
<ArticleId IdType="pii">JVI.02050-13</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.02050-13</ArticleId>
<ArticleId IdType="pmc">PMC3838113</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2002 Mar;83(Pt 3):595-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Nov;76(21):11065-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 May 19;57(4):537-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2720781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Jun 26;17(12):4847-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2526320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Feb;180(2):567-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1846489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Aug 15;222(2):375-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Apr 14;230(2):335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9143289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1595-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Apr 15;329(3):934-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Mar;273(5):1035-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 May 19;281(20):13894-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2005 Dec;1(4):e39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16341254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Dec 19;45(50):14908-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17154528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Feb 23;366(3):965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jul;81(13):7086-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jul 31;46(30):8744-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17605471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jan 4;283(1):554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17977841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Mar;82(5):2515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(9):4620-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jun;82(12):5999-6008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18385240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;426:145-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18542861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Drug Des. 2008 Jul;72(1):34-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18611220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2009 Oct;234(10):1117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19546349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2010 Apr 7;98(7):1327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20371333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 May 25;49(20):4308-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20420403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jul;84(14):7325-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):10148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20668085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2010 Dec;391(12):1461-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21087086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2010 Jan;1(1):59-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21203998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22073294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Apr;86(7):3995-4008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22278237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 May;86(9):4801-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2012 Nov;3(11):803-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23143870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 Dec;18(12):1820-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23142821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 May;94(Pt 5):1028-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23364191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Jul 1;21(13):3213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093723</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001128 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001128 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24027335
   |texte=   Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24027335" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021