Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models.

Identifieur interne : 001113 ( PubMed/Corpus ); précédent : 001112; suivant : 001114

Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models.

Auteurs : Christopher Barton ; J Calvin Kouokam ; Amanda B. Lasnik ; Oded Foreman ; Alexander Cambon ; Guy Brock ; David C. Montefiori ; Fakhrieh Vojdani ; Alison A. Mccormick ; Barry R. O'Keefe ; Kenneth E. Palmer

Source :

RBID : pubmed:24145548

English descriptors

Abstract

Griffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the surface of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evidence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive assessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxicity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization assay. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against enveloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral infections.

DOI: 10.1128/AAC.01407-13
PubMed: 24145548

Links to Exploration step

pubmed:24145548

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models.</title>
<author>
<name sortKey="Barton, Christopher" sort="Barton, Christopher" uniqKey="Barton C" first="Christopher" last="Barton">Christopher Barton</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kouokam, J Calvin" sort="Kouokam, J Calvin" uniqKey="Kouokam J" first="J Calvin" last="Kouokam">J Calvin Kouokam</name>
</author>
<author>
<name sortKey="Lasnik, Amanda B" sort="Lasnik, Amanda B" uniqKey="Lasnik A" first="Amanda B" last="Lasnik">Amanda B. Lasnik</name>
</author>
<author>
<name sortKey="Foreman, Oded" sort="Foreman, Oded" uniqKey="Foreman O" first="Oded" last="Foreman">Oded Foreman</name>
</author>
<author>
<name sortKey="Cambon, Alexander" sort="Cambon, Alexander" uniqKey="Cambon A" first="Alexander" last="Cambon">Alexander Cambon</name>
</author>
<author>
<name sortKey="Brock, Guy" sort="Brock, Guy" uniqKey="Brock G" first="Guy" last="Brock">Guy Brock</name>
</author>
<author>
<name sortKey="Montefiori, David C" sort="Montefiori, David C" uniqKey="Montefiori D" first="David C" last="Montefiori">David C. Montefiori</name>
</author>
<author>
<name sortKey="Vojdani, Fakhrieh" sort="Vojdani, Fakhrieh" uniqKey="Vojdani F" first="Fakhrieh" last="Vojdani">Fakhrieh Vojdani</name>
</author>
<author>
<name sortKey="Mccormick, Alison A" sort="Mccormick, Alison A" uniqKey="Mccormick A" first="Alison A" last="Mccormick">Alison A. Mccormick</name>
</author>
<author>
<name sortKey="O Keefe, Barry R" sort="O Keefe, Barry R" uniqKey="O Keefe B" first="Barry R" last="O'Keefe">Barry R. O'Keefe</name>
</author>
<author>
<name sortKey="Palmer, Kenneth E" sort="Palmer, Kenneth E" uniqKey="Palmer K" first="Kenneth E" last="Palmer">Kenneth E. Palmer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24145548</idno>
<idno type="pmid">24145548</idno>
<idno type="doi">10.1128/AAC.01407-13</idno>
<idno type="wicri:Area/PubMed/Corpus">001113</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001113</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models.</title>
<author>
<name sortKey="Barton, Christopher" sort="Barton, Christopher" uniqKey="Barton C" first="Christopher" last="Barton">Christopher Barton</name>
<affiliation>
<nlm:affiliation>Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kouokam, J Calvin" sort="Kouokam, J Calvin" uniqKey="Kouokam J" first="J Calvin" last="Kouokam">J Calvin Kouokam</name>
</author>
<author>
<name sortKey="Lasnik, Amanda B" sort="Lasnik, Amanda B" uniqKey="Lasnik A" first="Amanda B" last="Lasnik">Amanda B. Lasnik</name>
</author>
<author>
<name sortKey="Foreman, Oded" sort="Foreman, Oded" uniqKey="Foreman O" first="Oded" last="Foreman">Oded Foreman</name>
</author>
<author>
<name sortKey="Cambon, Alexander" sort="Cambon, Alexander" uniqKey="Cambon A" first="Alexander" last="Cambon">Alexander Cambon</name>
</author>
<author>
<name sortKey="Brock, Guy" sort="Brock, Guy" uniqKey="Brock G" first="Guy" last="Brock">Guy Brock</name>
</author>
<author>
<name sortKey="Montefiori, David C" sort="Montefiori, David C" uniqKey="Montefiori D" first="David C" last="Montefiori">David C. Montefiori</name>
</author>
<author>
<name sortKey="Vojdani, Fakhrieh" sort="Vojdani, Fakhrieh" uniqKey="Vojdani F" first="Fakhrieh" last="Vojdani">Fakhrieh Vojdani</name>
</author>
<author>
<name sortKey="Mccormick, Alison A" sort="Mccormick, Alison A" uniqKey="Mccormick A" first="Alison A" last="Mccormick">Alison A. Mccormick</name>
</author>
<author>
<name sortKey="O Keefe, Barry R" sort="O Keefe, Barry R" uniqKey="O Keefe B" first="Barry R" last="O'Keefe">Barry R. O'Keefe</name>
</author>
<author>
<name sortKey="Palmer, Kenneth E" sort="Palmer, Kenneth E" uniqKey="Palmer K" first="Kenneth E" last="Palmer">Kenneth E. Palmer</name>
</author>
</analytic>
<series>
<title level="j">Antimicrobial agents and chemotherapy</title>
<idno type="eISSN">1098-6596</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Anti-HIV Agents (blood)</term>
<term>Anti-HIV Agents (pharmacokinetics)</term>
<term>Anti-HIV Agents (therapeutic use)</term>
<term>Antiviral Agents (blood)</term>
<term>Antiviral Agents (pharmacokinetics)</term>
<term>Antiviral Agents (therapeutic use)</term>
<term>Female</term>
<term>Guinea Pigs</term>
<term>HIV Envelope Protein gp120 (metabolism)</term>
<term>Immunoassay</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Plant Lectins (blood)</term>
<term>Plant Lectins (pharmacokinetics)</term>
<term>Plant Lectins (therapeutic use)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Anti-HIV Agents</term>
<term>Antiviral Agents</term>
<term>Plant Lectins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>HIV Envelope Protein gp120</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Anti-HIV Agents</term>
<term>Antiviral Agents</term>
<term>Plant Lectins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Anti-HIV Agents</term>
<term>Antiviral Agents</term>
<term>Plant Lectins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Guinea Pigs</term>
<term>Immunoassay</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Griffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the surface of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evidence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive assessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxicity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization assay. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against enveloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral infections. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24145548</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>09</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-6596</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>58</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Antimicrobial agents and chemotherapy</Title>
<ISOAbbreviation>Antimicrob. Agents Chemother.</ISOAbbreviation>
</Journal>
<ArticleTitle>Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models.</ArticleTitle>
<Pagination>
<MedlinePgn>120-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AAC.01407-13</ELocationID>
<Abstract>
<AbstractText>Griffithsin (GRFT) is a red-alga-derived lectin that binds the terminal mannose residues of N-linked glycans found on the surface of human immunodeficiency virus type 1 (HIV-1), HIV-2, and other enveloped viruses, including hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Ebola virus. GRFT displays no human T-cell mitogenic activity and does not induce production of proinflammatory cytokines in treated human cell lines. However, despite the growing evidence showing the broad-spectrum nanomolar or better antiviral activity of GRFT, no study has reported a comprehensive assessment of GRFT safety as a potential systemic antiviral treatment. The results presented in this work show that minimal toxicity was induced by a range of single and repeated daily subcutaneous doses of GRFT in two rodent species, although we noted treatment-associated increases in spleen and liver mass suggestive of an antidrug immune response. The drug is systemically distributed, accumulating to high levels in the serum and plasma after subcutaneous delivery. Further, we showed that serum from GRFT-treated animals retained antiviral activity against HIV-1-enveloped pseudoviruses in a cell-based neutralization assay. Overall, our data presented here show that GRFT accumulates to relevant therapeutic concentrations which are tolerated with minimal toxicity. These studies support further development of GRFT as a systemic antiviral therapeutic agent against enveloped viruses, although deimmunizing the molecule may be necessary if it is to be used in long-term treatment of chronic viral infections. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barton</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kouokam</LastName>
<ForeName>J Calvin</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lasnik</LastName>
<ForeName>Amanda B</ForeName>
<Initials>AB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Foreman</LastName>
<ForeName>Oded</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cambon</LastName>
<ForeName>Alexander</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brock</LastName>
<ForeName>Guy</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Montefiori</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vojdani</LastName>
<ForeName>Fakhrieh</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McCormick</LastName>
<ForeName>Alison A</ForeName>
<Initials>AA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>O'Keefe</LastName>
<ForeName>Barry R</ForeName>
<Initials>BR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Palmer</LastName>
<ForeName>Kenneth E</ForeName>
<Initials>KE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 ES011564</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI076169</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI076169</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32-ES011564</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN27201100016C</GrantID>
<Agency>PHS HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Antimicrob Agents Chemother</MedlineTA>
<NlmUniqueID>0315061</NlmUniqueID>
<ISSNLinking>0066-4804</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019380">Anti-HIV Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015699">HIV Envelope Protein gp120</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037121">Plant Lectins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C514793">gp120 protein, Human immunodeficiency virus 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C499654">griffithsin protein, Griffithsia</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019380" MajorTopicYN="N">Anti-HIV Agents</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="Y">blood</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="Y">blood</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006168" MajorTopicYN="N">Guinea Pigs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015699" MajorTopicYN="N">HIV Envelope Protein gp120</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007118" MajorTopicYN="N">Immunoassay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037121" MajorTopicYN="N">Plant Lectins</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="Y">blood</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="Y">pharmacokinetics</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24145548</ArticleId>
<ArticleId IdType="pii">AAC.01407-13</ArticleId>
<ArticleId IdType="doi">10.1128/AAC.01407-13</ArticleId>
<ArticleId IdType="pmc">PMC3910741</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Biochem Cell Biol. 2004 Aug;36(8):1440-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15147723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(5):e64449</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23700478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1990 Dec 15;272(3):721-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2268297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 11;280(10):9345-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Medsurg Nurs. 2005 Apr;14(2):93-8; quiz 99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15916264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(12):7777-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15919930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2006 Jul;14(7):1127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16843894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Sep;80(17):8411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2007 May 15;67(3):661-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17340634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2007 May;15(5):211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17398101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2007 Aug;5(8):583-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17632570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Nov;3(11):e169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17983270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antivir Chem Chemother. 2007;18(6):317-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18320936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2008;40(5):929-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18083059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Immunol. 2005 Jan;Chapter 12:Unit 12.11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMB Rep. 2008 May 31;41(5):369-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18510867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2008;40(12):2802-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18598778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2008 Dec;80(3):266-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18601954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6099-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19332801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Mar;84(5):2511-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20032190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Jun 20;402(1):187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20392471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2010 Aug;54(8):3287-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13800-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2010 Sep 8;18(9):1104-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(22):11905-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20844034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Jan;55(1):264-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20956603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2011 Jan 15;203(2):175-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21288816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Aug 1;187(3):1201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21709154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e22635</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21858152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2011 Oct;92(Pt 10):2367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21715597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Nov;55(11):5159-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21896910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2011 Oct;3(10):1909-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22069522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS Res Hum Retroviruses. 2012 Nov;28(11):1513-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22607556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2013 Feb;158(2):349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23053519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2013 Feb;20(2):152-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2013 Apr 5;34(10):879-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23299435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Mar;73(3):837-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1083027</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001113 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001113 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24145548
   |texte=   Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24145548" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021