Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes.

Identifieur interne : 001111 ( PubMed/Corpus ); précédent : 001110; suivant : 001112

Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes.

Auteurs : Helena J. Maier ; Philippa C. Hawes ; Eleanor M. Cottam ; Judith Mantell ; Paul Verkade ; Paul Monaghan ; Tom Wileman ; Paul Britton

Source :

RBID : pubmed:24149513

English descriptors

Abstract

Replication of positive-sense RNA viruses is associated with the rearrangement of cellular membranes. Previous work on the infection of tissue culture cell lines with the betacoronaviruses mouse hepatitis virus and severe acute respiratory syndrome coronavirus (SARS-CoV) showed that they generate double-membrane vesicles (DMVs) and convoluted membranes as part of a reticular membrane network. Here we describe a detailed study of the membrane rearrangements induced by the avian gammacoronavirus infectious bronchitis virus (IBV) in a mammalian cell line but also in primary avian cells and in epithelial cells of ex vivo tracheal organ cultures. In all cell types, structures novel to IBV infection were identified that we have termed zippered endoplasmic reticulum (ER) and spherules. Zippered ER lacked luminal space, suggesting zippering of ER cisternae, while spherules appeared as uniform invaginations of zippered ER. Electron tomography showed that IBV-induced spherules are tethered to the zippered ER and that there is a channel connecting the interior of the spherule with the cytoplasm, a feature thought to be necessary for sites of RNA synthesis but not seen previously for membrane rearrangements induced by coronaviruses. We also identified DMVs in IBV-infected cells that were observed as single individual DMVs or were connected to the ER via their outer membrane but not to the zippered ER. Interestingly, IBV-induced spherules strongly resemble confirmed sites of RNA synthesis for alphaviruses, nodaviruses, and bromoviruses, which may indicate similar strategies of IBV and these diverse viruses for the assembly of RNA replication complexes.

DOI: 10.1128/mBio.00801-13
PubMed: 24149513

Links to Exploration step

pubmed:24149513

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes.</title>
<author>
<name sortKey="Maier, Helena J" sort="Maier, Helena J" uniqKey="Maier H" first="Helena J" last="Maier">Helena J. Maier</name>
<affiliation>
<nlm:affiliation>The Pirbright Institute, Compton Laboratory, Compton, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hawes, Philippa C" sort="Hawes, Philippa C" uniqKey="Hawes P" first="Philippa C" last="Hawes">Philippa C. Hawes</name>
</author>
<author>
<name sortKey="Cottam, Eleanor M" sort="Cottam, Eleanor M" uniqKey="Cottam E" first="Eleanor M" last="Cottam">Eleanor M. Cottam</name>
</author>
<author>
<name sortKey="Mantell, Judith" sort="Mantell, Judith" uniqKey="Mantell J" first="Judith" last="Mantell">Judith Mantell</name>
</author>
<author>
<name sortKey="Verkade, Paul" sort="Verkade, Paul" uniqKey="Verkade P" first="Paul" last="Verkade">Paul Verkade</name>
</author>
<author>
<name sortKey="Monaghan, Paul" sort="Monaghan, Paul" uniqKey="Monaghan P" first="Paul" last="Monaghan">Paul Monaghan</name>
</author>
<author>
<name sortKey="Wileman, Tom" sort="Wileman, Tom" uniqKey="Wileman T" first="Tom" last="Wileman">Tom Wileman</name>
</author>
<author>
<name sortKey="Britton, Paul" sort="Britton, Paul" uniqKey="Britton P" first="Paul" last="Britton">Paul Britton</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24149513</idno>
<idno type="pmid">24149513</idno>
<idno type="doi">10.1128/mBio.00801-13</idno>
<idno type="wicri:Area/PubMed/Corpus">001111</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001111</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes.</title>
<author>
<name sortKey="Maier, Helena J" sort="Maier, Helena J" uniqKey="Maier H" first="Helena J" last="Maier">Helena J. Maier</name>
<affiliation>
<nlm:affiliation>The Pirbright Institute, Compton Laboratory, Compton, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hawes, Philippa C" sort="Hawes, Philippa C" uniqKey="Hawes P" first="Philippa C" last="Hawes">Philippa C. Hawes</name>
</author>
<author>
<name sortKey="Cottam, Eleanor M" sort="Cottam, Eleanor M" uniqKey="Cottam E" first="Eleanor M" last="Cottam">Eleanor M. Cottam</name>
</author>
<author>
<name sortKey="Mantell, Judith" sort="Mantell, Judith" uniqKey="Mantell J" first="Judith" last="Mantell">Judith Mantell</name>
</author>
<author>
<name sortKey="Verkade, Paul" sort="Verkade, Paul" uniqKey="Verkade P" first="Paul" last="Verkade">Paul Verkade</name>
</author>
<author>
<name sortKey="Monaghan, Paul" sort="Monaghan, Paul" uniqKey="Monaghan P" first="Paul" last="Monaghan">Paul Monaghan</name>
</author>
<author>
<name sortKey="Wileman, Tom" sort="Wileman, Tom" uniqKey="Wileman T" first="Tom" last="Wileman">Tom Wileman</name>
</author>
<author>
<name sortKey="Britton, Paul" sort="Britton, Paul" uniqKey="Britton P" first="Paul" last="Britton">Paul Britton</name>
</author>
</analytic>
<series>
<title level="j">mBio</title>
<idno type="eISSN">2150-7511</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chickens</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Coronavirus Infections (virology)</term>
<term>Endoplasmic Reticulum (chemistry)</term>
<term>Endoplasmic Reticulum (ultrastructure)</term>
<term>Endoplasmic Reticulum (virology)</term>
<term>Humans</term>
<term>Infectious bronchitis virus (genetics)</term>
<term>Infectious bronchitis virus (physiology)</term>
<term>Intracellular Membranes (chemistry)</term>
<term>Intracellular Membranes (ultrastructure)</term>
<term>Intracellular Membranes (virology)</term>
<term>Poultry Diseases (virology)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Intracellular Membranes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Infectious bronchitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Infectious bronchitis virus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Endoplasmic Reticulum</term>
<term>Intracellular Membranes</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Endoplasmic Reticulum</term>
<term>Intracellular Membranes</term>
<term>Poultry Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Chickens</term>
<term>Humans</term>
<term>Virus Replication</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Replication of positive-sense RNA viruses is associated with the rearrangement of cellular membranes. Previous work on the infection of tissue culture cell lines with the betacoronaviruses mouse hepatitis virus and severe acute respiratory syndrome coronavirus (SARS-CoV) showed that they generate double-membrane vesicles (DMVs) and convoluted membranes as part of a reticular membrane network. Here we describe a detailed study of the membrane rearrangements induced by the avian gammacoronavirus infectious bronchitis virus (IBV) in a mammalian cell line but also in primary avian cells and in epithelial cells of ex vivo tracheal organ cultures. In all cell types, structures novel to IBV infection were identified that we have termed zippered endoplasmic reticulum (ER) and spherules. Zippered ER lacked luminal space, suggesting zippering of ER cisternae, while spherules appeared as uniform invaginations of zippered ER. Electron tomography showed that IBV-induced spherules are tethered to the zippered ER and that there is a channel connecting the interior of the spherule with the cytoplasm, a feature thought to be necessary for sites of RNA synthesis but not seen previously for membrane rearrangements induced by coronaviruses. We also identified DMVs in IBV-infected cells that were observed as single individual DMVs or were connected to the ER via their outer membrane but not to the zippered ER. Interestingly, IBV-induced spherules strongly resemble confirmed sites of RNA synthesis for alphaviruses, nodaviruses, and bromoviruses, which may indicate similar strategies of IBV and these diverse viruses for the assembly of RNA replication complexes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24149513</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2150-7511</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>mBio</Title>
<ISOAbbreviation>mBio</ISOAbbreviation>
</Journal>
<ArticleTitle>Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes.</ArticleTitle>
<Pagination>
<MedlinePgn>e00801-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/mBio.00801-13</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e00801-13</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Replication of positive-sense RNA viruses is associated with the rearrangement of cellular membranes. Previous work on the infection of tissue culture cell lines with the betacoronaviruses mouse hepatitis virus and severe acute respiratory syndrome coronavirus (SARS-CoV) showed that they generate double-membrane vesicles (DMVs) and convoluted membranes as part of a reticular membrane network. Here we describe a detailed study of the membrane rearrangements induced by the avian gammacoronavirus infectious bronchitis virus (IBV) in a mammalian cell line but also in primary avian cells and in epithelial cells of ex vivo tracheal organ cultures. In all cell types, structures novel to IBV infection were identified that we have termed zippered endoplasmic reticulum (ER) and spherules. Zippered ER lacked luminal space, suggesting zippering of ER cisternae, while spherules appeared as uniform invaginations of zippered ER. Electron tomography showed that IBV-induced spherules are tethered to the zippered ER and that there is a channel connecting the interior of the spherule with the cytoplasm, a feature thought to be necessary for sites of RNA synthesis but not seen previously for membrane rearrangements induced by coronaviruses. We also identified DMVs in IBV-infected cells that were observed as single individual DMVs or were connected to the ER via their outer membrane but not to the zippered ER. Interestingly, IBV-induced spherules strongly resemble confirmed sites of RNA synthesis for alphaviruses, nodaviruses, and bromoviruses, which may indicate similar strategies of IBV and these diverse viruses for the assembly of RNA replication complexes.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">All positive-sense single-stranded RNA viruses induce rearranged cellular membranes, providing a platform for viral replication complex assembly and protecting viral RNA from cellular defenses. We have studied the membrane rearrangements induced by an important poultry pathogen, the gammacoronavirus infectious bronchitis virus (IBV). Previous work studying closely related betacoronaviruses identified double-membrane vesicles (DMVs) and convoluted membranes (CMs) derived from the endoplasmic reticulum (ER) in infected cells. However, the role of DMVs and CMs in viral RNA synthesis remains unclear because these sealed vesicles lack a means of delivering viral RNA to the cytoplasm. Here, we characterized structures novel to IBV infection: zippered ER and small vesicles tethered to the zippered ER termed spherules. Significantly, spherules contain a channel connecting their interior to the cytoplasm and strongly resemble confirmed sites of RNA synthesis for other positive-sense RNA viruses, making them ideal candidates for the site of IBV RNA synthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Maier</LastName>
<ForeName>Helena J</ForeName>
<Initials>HJ</Initials>
<AffiliationInfo>
<Affiliation>The Pirbright Institute, Compton Laboratory, Compton, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hawes</LastName>
<ForeName>Philippa C</ForeName>
<Initials>PC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cottam</LastName>
<ForeName>Eleanor M</ForeName>
<Initials>EM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mantell</LastName>
<ForeName>Judith</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Verkade</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Monaghan</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wileman</LastName>
<ForeName>Tom</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Britton</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/E01805X/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/E018521/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>mBio</MedlineTA>
<NlmUniqueID>101519231</NlmUniqueID>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>MBio. 2013;4(6):e00987-13</RefSource>
<PMID Version="1">24345746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Bioengineered. 2014 Sep-Oct;5(5):288-92</RefSource>
<PMID Version="1">25482229</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002645" MajorTopicYN="N">Chickens</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004721" MajorTopicYN="N">Endoplasmic Reticulum</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001351" MajorTopicYN="N">Infectious bronchitis virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007425" MajorTopicYN="N">Intracellular Membranes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011201" MajorTopicYN="N">Poultry Diseases</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24149513</ArticleId>
<ArticleId IdType="pii">mBio.00801-13</ArticleId>
<ArticleId IdType="doi">10.1128/mBio.00801-13</ArticleId>
<ArticleId IdType="pmc">PMC3812713</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Struct Biol. 2008 Mar;161(3):439-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17998167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Sep;5(9):e220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Mar;9(3):505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11931759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2010 Jun;12(6):844-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1972 Sep;10(3):492-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4672392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Feb;10(2):320-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1965 Jan;24:57-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14286297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;454:103-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19057860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1968 Nov;2(11):1326-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5750316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(20):10438-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20686019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Oct 28;6(10):e270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18959488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(1):20-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23112871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jun;80(12):5927-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Apr;76(8):3697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2013 Apr;70(7):1297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23184194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 May 10;361(2):304-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Sep;71(9):6650-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9261387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Mar;73(3):2016-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9971782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 May;66(5):2740-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1313898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Dec;75(24):12370-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11711627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12492-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Mar;86(5):2474-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22190716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1976;50(1-2):109-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">176965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Apr;75(8):3873-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1986 Jan;57(1):328-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2867230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e24352</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21912629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2009 Apr 23;5(4):365-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19380115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1967 May;32(1):128-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6067298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 May;6(5):363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18414501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Virol. 2013 May 12;2(2):32-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24175228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):7790-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 May;77(9):5487-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 May;86(10):5808-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22438542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Rep. 2005;10(3):167-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16156956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 16;6(9):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Microbiol. 1970 Nov;3(4):643-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5505021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Oct;82(20):9829-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18667505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jan;86(1):302-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Dec;75(24):12359-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11711626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Dec;70(12):8908-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8971020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1972 Sep;10(3):504-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4342056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Aug;94(Pt 8):1749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23620378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Sep;203(2):286-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8053152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 26;8(6):e67875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23840781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microsc. 2007 May;226(Pt 2):182-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17444947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1996 Jan-Feb;116(1):71-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8742726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:31-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 13;283(24):16525-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18411274</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001111 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001111 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24149513
   |texte=   Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24149513" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021