Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.

Identifieur interne : 001055 ( PubMed/Corpus ); précédent : 001054; suivant : 001056

Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.

Auteurs : Hatem A. Elshabrawy ; Jilao Fan ; Christine S. Haddad ; Kiira Ratia ; Christopher C. Broder ; Michael Caffrey ; Bellur S. Prabhakar

Source :

RBID : pubmed:24501399

English descriptors

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses.

DOI: 10.1128/JVI.03050-13
PubMed: 24501399

Links to Exploration step

pubmed:24501399

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.</title>
<author>
<name sortKey="Elshabrawy, Hatem A" sort="Elshabrawy, Hatem A" uniqKey="Elshabrawy H" first="Hatem A" last="Elshabrawy">Hatem A. Elshabrawy</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fan, Jilao" sort="Fan, Jilao" uniqKey="Fan J" first="Jilao" last="Fan">Jilao Fan</name>
</author>
<author>
<name sortKey="Haddad, Christine S" sort="Haddad, Christine S" uniqKey="Haddad C" first="Christine S" last="Haddad">Christine S. Haddad</name>
</author>
<author>
<name sortKey="Ratia, Kiira" sort="Ratia, Kiira" uniqKey="Ratia K" first="Kiira" last="Ratia">Kiira Ratia</name>
</author>
<author>
<name sortKey="Broder, Christopher C" sort="Broder, Christopher C" uniqKey="Broder C" first="Christopher C" last="Broder">Christopher C. Broder</name>
</author>
<author>
<name sortKey="Caffrey, Michael" sort="Caffrey, Michael" uniqKey="Caffrey M" first="Michael" last="Caffrey">Michael Caffrey</name>
</author>
<author>
<name sortKey="Prabhakar, Bellur S" sort="Prabhakar, Bellur S" uniqKey="Prabhakar B" first="Bellur S" last="Prabhakar">Bellur S. Prabhakar</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24501399</idno>
<idno type="pmid">24501399</idno>
<idno type="doi">10.1128/JVI.03050-13</idno>
<idno type="wicri:Area/PubMed/Corpus">001055</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001055</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.</title>
<author>
<name sortKey="Elshabrawy, Hatem A" sort="Elshabrawy, Hatem A" uniqKey="Elshabrawy H" first="Hatem A" last="Elshabrawy">Hatem A. Elshabrawy</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fan, Jilao" sort="Fan, Jilao" uniqKey="Fan J" first="Jilao" last="Fan">Jilao Fan</name>
</author>
<author>
<name sortKey="Haddad, Christine S" sort="Haddad, Christine S" uniqKey="Haddad C" first="Christine S" last="Haddad">Christine S. Haddad</name>
</author>
<author>
<name sortKey="Ratia, Kiira" sort="Ratia, Kiira" uniqKey="Ratia K" first="Kiira" last="Ratia">Kiira Ratia</name>
</author>
<author>
<name sortKey="Broder, Christopher C" sort="Broder, Christopher C" uniqKey="Broder C" first="Christopher C" last="Broder">Christopher C. Broder</name>
</author>
<author>
<name sortKey="Caffrey, Michael" sort="Caffrey, Michael" uniqKey="Caffrey M" first="Michael" last="Caffrey">Michael Caffrey</name>
</author>
<author>
<name sortKey="Prabhakar, Bellur S" sort="Prabhakar, Bellur S" uniqKey="Prabhakar B" first="Bellur S" last="Prabhakar">Bellur S. Prabhakar</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antiviral Agents (pharmacology)</term>
<term>Cathepsin L (metabolism)</term>
<term>Drug Evaluation, Preclinical (methods)</term>
<term>Ebolavirus (drug effects)</term>
<term>Ebolavirus (metabolism)</term>
<term>Hendra Virus (drug effects)</term>
<term>Hendra Virus (metabolism)</term>
<term>High-Throughput Screening Assays (methods)</term>
<term>Humans</term>
<term>Nipah Virus (drug effects)</term>
<term>Nipah Virus (metabolism)</term>
<term>SARS Virus (drug effects)</term>
<term>SARS Virus (metabolism)</term>
<term>Small Molecule Libraries (pharmacology)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Virus Diseases (enzymology)</term>
<term>Virus Diseases (virology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cathepsin L</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Small Molecule Libraries</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Ebolavirus</term>
<term>Hendra Virus</term>
<term>Nipah Virus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Ebolavirus</term>
<term>Hendra Virus</term>
<term>Nipah Virus</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Drug Evaluation, Preclinical</term>
<term>High-Throughput Screening Assays</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24501399</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>88</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.</ArticleTitle>
<Pagination>
<MedlinePgn>4353-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.03050-13</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Severe acute respiratory syndrome coronavirus (SARS-CoV) and Ebola, Hendra, and Nipah viruses are members of different viral families and are known causative agents of fatal viral diseases. These viruses depend on cathepsin L for entry into their target cells. The viral glycoproteins need to be primed by protease cleavage, rendering them active for fusion with the host cell membrane. In this study, we developed a novel high-throughput screening assay based on peptides, derived from the glycoproteins of the aforementioned viruses, which contain the cathepsin L cleavage site. We screened a library of 5,000 small molecules and discovered a small molecule that can inhibit the cathepsin L cleavage of all viral peptides with minimal inhibition of cleavage of a host protein-derived peptide (pro-neuropeptide Y). The small molecule inhibited the entry of all pseudotyped viruses in vitro and the cleavage of SARS-CoV spike glycoprotein in an in vitro cleavage assay. In addition, the Hendra and Nipah virus fusion glycoproteins were not cleaved in the presence of the small molecule in a cell-based cleavage assay. Furthermore, we demonstrate that the small molecule is a mixed inhibitor of cathepsin L. Our broad-spectrum antiviral small molecule appears to be an ideal candidate for future optimization and development into a potent antiviral against SARS-CoV and Ebola, Hendra, and Nipah viruses.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">We developed a novel high-throughput screening assay to identify small molecules that can prevent cathepsin L cleavage of viral glycoproteins derived from SARS-CoV and Ebola, Hendra, and Nipah viruses that are required for their entry into the host cell. We identified a novel broad-spectrum small molecule that could block cathepsin L-mediated cleavage and thus inhibit the entry of pseudotypes bearing the glycoprotein derived from SARS-CoV or Ebola, Hendra, or Nipah virus. The small molecule can be further optimized and developed into a potent broad-spectrum antiviral drug.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Elshabrawy</LastName>
<ForeName>Hatem A</ForeName>
<Initials>HA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Jilao</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haddad</LastName>
<ForeName>Christine S</ForeName>
<Initials>CS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ratia</LastName>
<ForeName>Kiira</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Broder</LastName>
<ForeName>Christopher C</ForeName>
<Initials>CC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Caffrey</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Prabhakar</LastName>
<ForeName>Bellur S</ForeName>
<Initials>BS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1U01AI082296</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054852">Small Molecule Libraries</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.15</RegistryNumber>
<NameOfSubstance UI="D056668">Cathepsin L</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056668" MajorTopicYN="N">Cathepsin L</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004353" MajorTopicYN="N">Drug Evaluation, Preclinical</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029043" MajorTopicYN="N">Ebolavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045404" MajorTopicYN="N">Hendra Virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057166" MajorTopicYN="N">High-Throughput Screening Assays</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045405" MajorTopicYN="N">Nipah Virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054852" MajorTopicYN="N">Small Molecule Libraries</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014777" MajorTopicYN="N">Virus Diseases</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24501399</ArticleId>
<ArticleId IdType="pii">JVI.03050-13</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.03050-13</ArticleId>
<ArticleId IdType="pmc">PMC3993759</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2005 Dec 1;438(7068):575-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16319873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 14;283(46):31289-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Mar 15;346(2):251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16460775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Res Rev. 2014 Mar;34(2):301-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23801557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 May;85(9):4122-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jun;86(12):6537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e35876</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22558251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):873-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21068237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Med. 1990 Feb;7(1):17-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2182968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):5085-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer. 2010;9:299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21092230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 May;98(2):297-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23458714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(11):6150-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med J Aust. 1995 Jun 19;162(12):642-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7603375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Dec;87(23):12552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(17):8887-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18562523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2012;359:105-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22476529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Travel Med. 1995 Dec 1;2(4):275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9815409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuropeptides. 2010 Dec;44(6):457-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21047684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2000 Sep 25;69(2):83-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2008 Jul;106(1):384-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18410501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can Med Assoc J. 1978 Feb 18;118(4):347-8, 350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">564739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Nov;87(21):11930-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23966399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e50366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23185609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Sep;99(3):261-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23791870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 May 26;288(5470):1432-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Mar;84(6):2972-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Dec;81(24):13378-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17928356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2014 Jan 9;57(1):29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24359257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2010 Jul 8;53(13):4968-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20527968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(10):e76469</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24098509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 Jan;52(1):329-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17967913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1999 Oct 9;354(9186):1257-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10520635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 2011 Nov;85(5):946-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22049055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2007;315:133-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Apr;80(8):4174-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16571833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Sep;78(18):9705-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15331703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Oct;79(20):12714-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16188974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(1):282-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24155384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1993 Jun 3;363(6428):418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8502295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Apr 25;361(1):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17161858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Feb;1842(2):256-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2012 Dec;56(12):6109-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22948883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):8017-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2008 Sep 11;4(3):260-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18779052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2008 Jan;29(1):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18054799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Mar 1;424(1):3-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22222211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2010 Aug;78(2):319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20466822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(12):e1003774</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24348248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1993 Jul;37(7):1473-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8363379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2013 Nov 1;208(9):1366-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23901094</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001055 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001055 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24501399
   |texte=   Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24501399" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021