Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities.

Identifieur interne : 001050 ( PubMed/Corpus ); précédent : 001049; suivant : 001051

Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities.

Auteurs : Anna M. Mielech ; Yafang Chen ; Andrew D. Mesecar ; Susan C. Baker

Source :

RBID : pubmed:24512893

English descriptors

Abstract

Coronaviruses and arteriviruses, members of the order Nidovirales, are positive strand RNA viruses that encode large replicase polyproteins that are processed by viral proteases to generate the nonstructural proteins which mediate viral RNA synthesis. The viral papain-like proteases (PLPs) are critical for processing the amino-terminal end of the replicase and are attractive targets for antiviral therapies. With the analysis of the papain-like protease of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), came the realization of the multifunctional nature of these enzymes. Structural and enzymatic studies revealed that SARS-CoV PLpro can act as both a protease to cleave peptide bonds and also as a deubiquitinating (DUB) enzyme to cleave the isopeptide bonds found in polyubiquitin chains. Furthermore, viral DUBs can also remove the protective effect of conjugated ubiquitin-like molecules such as interferon stimulated gene 15 (ISG15). Extension of these studies to other coronaviruses and arteriviruses led to the realization that viral protease/DUB activity is conserved in many family members. Overexpression studies revealed that viral protease/DUB activity can modulate or block activation of the innate immune response pathway. Importantly, mutations that alter DUB activity but not viral protease activity have been identified and arteriviruses expressing DUB mutants stimulated higher levels of acute inflammatory cytokines after infection. Further understanding of the multifunctional nature of the Nidovirus PLP/DUBs may facilitate vaccine development. Here, we review studies describing the PLPs' enzymatic activity and their role in virus pathogenesis.

DOI: 10.1016/j.virusres.2014.01.025
PubMed: 24512893

Links to Exploration step

pubmed:24512893

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities.</title>
<author>
<name sortKey="Mielech, Anna M" sort="Mielech, Anna M" uniqKey="Mielech A" first="Anna M" last="Mielech">Anna M. Mielech</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yafang" sort="Chen, Yafang" uniqKey="Chen Y" first="Yafang" last="Chen">Yafang Chen</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Purdue University, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D" last="Mesecar">Andrew D. Mesecar</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Purdue University, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, United States. Electronic address: sbaker1@lumc.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24512893</idno>
<idno type="pmid">24512893</idno>
<idno type="doi">10.1016/j.virusres.2014.01.025</idno>
<idno type="wicri:Area/PubMed/Corpus">001050</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001050</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities.</title>
<author>
<name sortKey="Mielech, Anna M" sort="Mielech, Anna M" uniqKey="Mielech A" first="Anna M" last="Mielech">Anna M. Mielech</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yafang" sort="Chen, Yafang" uniqKey="Chen Y" first="Yafang" last="Chen">Yafang Chen</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Purdue University, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D" last="Mesecar">Andrew D. Mesecar</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Purdue University, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, United States. Electronic address: sbaker1@lumc.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Virus research</title>
<idno type="eISSN">1872-7492</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Multifunctional Enzymes (metabolism)</term>
<term>Nidovirales (enzymology)</term>
<term>Peptide Hydrolases (metabolism)</term>
<term>Ubiquitin-Specific Proteases (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Multifunctional Enzymes</term>
<term>Peptide Hydrolases</term>
<term>Ubiquitin-Specific Proteases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Nidovirales</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses and arteriviruses, members of the order Nidovirales, are positive strand RNA viruses that encode large replicase polyproteins that are processed by viral proteases to generate the nonstructural proteins which mediate viral RNA synthesis. The viral papain-like proteases (PLPs) are critical for processing the amino-terminal end of the replicase and are attractive targets for antiviral therapies. With the analysis of the papain-like protease of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), came the realization of the multifunctional nature of these enzymes. Structural and enzymatic studies revealed that SARS-CoV PLpro can act as both a protease to cleave peptide bonds and also as a deubiquitinating (DUB) enzyme to cleave the isopeptide bonds found in polyubiquitin chains. Furthermore, viral DUBs can also remove the protective effect of conjugated ubiquitin-like molecules such as interferon stimulated gene 15 (ISG15). Extension of these studies to other coronaviruses and arteriviruses led to the realization that viral protease/DUB activity is conserved in many family members. Overexpression studies revealed that viral protease/DUB activity can modulate or block activation of the innate immune response pathway. Importantly, mutations that alter DUB activity but not viral protease activity have been identified and arteriviruses expressing DUB mutants stimulated higher levels of acute inflammatory cytokines after infection. Further understanding of the multifunctional nature of the Nidovirus PLP/DUBs may facilitate vaccine development. Here, we review studies describing the PLPs' enzymatic activity and their role in virus pathogenesis. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24512893</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-7492</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>194</Volume>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Virus research</Title>
<ISOAbbreviation>Virus Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities.</ArticleTitle>
<Pagination>
<MedlinePgn>184-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.virusres.2014.01.025</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0168-1702(14)00040-9</ELocationID>
<Abstract>
<AbstractText>Coronaviruses and arteriviruses, members of the order Nidovirales, are positive strand RNA viruses that encode large replicase polyproteins that are processed by viral proteases to generate the nonstructural proteins which mediate viral RNA synthesis. The viral papain-like proteases (PLPs) are critical for processing the amino-terminal end of the replicase and are attractive targets for antiviral therapies. With the analysis of the papain-like protease of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), came the realization of the multifunctional nature of these enzymes. Structural and enzymatic studies revealed that SARS-CoV PLpro can act as both a protease to cleave peptide bonds and also as a deubiquitinating (DUB) enzyme to cleave the isopeptide bonds found in polyubiquitin chains. Furthermore, viral DUBs can also remove the protective effect of conjugated ubiquitin-like molecules such as interferon stimulated gene 15 (ISG15). Extension of these studies to other coronaviruses and arteriviruses led to the realization that viral protease/DUB activity is conserved in many family members. Overexpression studies revealed that viral protease/DUB activity can modulate or block activation of the innate immune response pathway. Importantly, mutations that alter DUB activity but not viral protease activity have been identified and arteriviruses expressing DUB mutants stimulated higher levels of acute inflammatory cytokines after infection. Further understanding of the multifunctional nature of the Nidovirus PLP/DUBs may facilitate vaccine development. Here, we review studies describing the PLPs' enzymatic activity and their role in virus pathogenesis. </AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mielech</LastName>
<ForeName>Anna M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yafang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Purdue University, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mesecar</LastName>
<ForeName>Andrew D</ForeName>
<Initials>AD</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Purdue University, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Susan C</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, United States. Electronic address: sbaker1@lumc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI085089</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Virus Res</MedlineTA>
<NlmUniqueID>8410979</NlmUniqueID>
<ISSNLinking>0168-1702</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064251">Multifunctional Enzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.-</RegistryNumber>
<NameOfSubstance UI="D010447">Peptide Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.19.12</RegistryNumber>
<NameOfSubstance UI="D064570">Ubiquitin-Specific Proteases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D064251" MajorTopicYN="N">Multifunctional Enzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028381" MajorTopicYN="N">Nidovirales</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010447" MajorTopicYN="N">Peptide Hydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064570" MajorTopicYN="N">Ubiquitin-Specific Proteases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Arterivirus</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">DeISGylating activity</Keyword>
<Keyword MajorTopicYN="N">Deubiquitinating enzyme</Keyword>
<Keyword MajorTopicYN="N">MERS-CoV</Keyword>
<Keyword MajorTopicYN="N">Papain-like protease</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>01</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24512893</ArticleId>
<ArticleId IdType="pii">S0168-1702(14)00040-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.virusres.2014.01.025</ArticleId>
<ArticleId IdType="pmc">PMC4125544</ArticleId>
<ArticleId IdType="mid">NIHMS567844</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2013 Oct;13(10):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933067</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2010 Oct;2(10):2154-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21994614</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2014 Feb;450-451:64-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24503068</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 2005 Nov 2;24(21):3747-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16211010</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Sep;83(18):9449-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1986 Oct;60(1):12-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3018279</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):E838-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23401522</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2014 Mar;95(Pt 3):614-626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24362959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 May 21;274(21):14918-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329692</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306591</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32208-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):10102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20668084</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2010 May;1802(5):485-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20153823</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Nov;79(22):13974-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254333</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Apr;73(4):2658-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074111</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2011 Feb 18;6(2):e17192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21364999</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Sep;74(17):7911-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933699</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Apr;79(7):4550-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15767458</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2014 Feb;14(2):140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355866</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11089-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9736694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Apr;20(4):552-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24655412</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Protein Sci. 2008 Jun;17(6):1035-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424514</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2003 Jul;77(13):7376-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805436</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2013 Jul;94(Pt 7):1554-1567</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23596270</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):13600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Biochem. 2012;81:203-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524316</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2007 Dec 13;2(6):404-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18078692</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581910</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2004 Feb;24(4):1779-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749392</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Aug;10(8):550-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19626045</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1989 Sep;63(9):3693-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2547993</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2013 Nov;19(11):1819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24206838</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 May;84(9):4619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181693</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 1992 Jul;189(1):274-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1318604</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Oct 1;466(1):8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692280</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1371-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17227866</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Apr;86(7):3839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22258253</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1993 Oct;67(10):6056-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8396668</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2012 Nov 20;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 Aug;87(15):8638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720729</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306590</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Jun;81(11):6007-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392370</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Res. 2008 Nov;18(11):1105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Jan;86(2):773-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072774</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):10063-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20668092</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Jul;83(13):6689-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19369340</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 Nov;87(21):11955-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986593</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2010 Aug;84(15):7832-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20504922</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1995 Jul 14;270(28):16671-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7622476</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001050 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001050 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24512893
   |texte=   Nidovirus papain-like proteases: multifunctional enzymes with protease, deubiquitinating and deISGylating activities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24512893" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021