Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice.

Identifieur interne : 001007 ( PubMed/Corpus ); précédent : 001006; suivant : 001008

Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice.

Auteurs : Christopher M. Coleman ; Ye V. Liu ; Haiyan Mu ; Justin K. Taylor ; Michael Massare ; David C. Flyer ; Gale E. Smith ; Matthew B. Frieman

Source :

RBID : pubmed:24736006

English descriptors

Abstract

Development of vaccination strategies for emerging pathogens are particularly challenging because of the sudden nature of their emergence and the long process needed for traditional vaccine development. Therefore, there is a need for development of a rapid method of vaccine development that can respond to emerging pathogens in a short time frame. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in late 2012 demonstrate the importance of coronaviruses as emerging pathogens. The spike glycoproteins of coronaviruses reside on the surface of the virion and are responsible for virus entry. The spike glycoprotein is the major immunodominant antigen of coronaviruses and has proven to be an excellent target for vaccine designs that seek to block coronavirus entry and promote antibody targeting of infected cells. Vaccination strategies for coronaviruses have involved live attenuated virus, recombinant viruses, non-replicative virus-like particles expressing coronavirus proteins or DNA plasmids expressing coronavirus genes. None of these strategies has progressed to an approved human coronavirus vaccine in the ten years since SARS-CoV emerged. Here we describe a novel method for generating MERS-CoV and SARS-CoV full-length spike nanoparticles, which in combination with adjuvants are able to produce high titer antibodies in mice.

DOI: 10.1016/j.vaccine.2014.04.016
PubMed: 24736006

Links to Exploration step

pubmed:24736006

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice.</title>
<author>
<name sortKey="Coleman, Christopher M" sort="Coleman, Christopher M" uniqKey="Coleman C" first="Christopher M" last="Coleman">Christopher M. Coleman</name>
<affiliation>
<nlm:affiliation>University of Maryland School of Medicine 685 West Baltimore St Baltimore, MD 21201.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ye V" sort="Liu, Ye V" uniqKey="Liu Y" first="Ye V" last="Liu">Ye V. Liu</name>
<affiliation>
<nlm:affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mu, Haiyan" sort="Mu, Haiyan" uniqKey="Mu H" first="Haiyan" last="Mu">Haiyan Mu</name>
<affiliation>
<nlm:affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Justin K" sort="Taylor, Justin K" uniqKey="Taylor J" first="Justin K" last="Taylor">Justin K. Taylor</name>
<affiliation>
<nlm:affiliation>University of Maryland School of Medicine 685 West Baltimore St Baltimore, MD 21201.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Massare, Michael" sort="Massare, Michael" uniqKey="Massare M" first="Michael" last="Massare">Michael Massare</name>
<affiliation>
<nlm:affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Flyer, David C" sort="Flyer, David C" uniqKey="Flyer D" first="David C" last="Flyer">David C. Flyer</name>
<affiliation>
<nlm:affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, Gale E" sort="Smith, Gale E" uniqKey="Smith G" first="Gale E" last="Smith">Gale E. Smith</name>
<affiliation>
<nlm:affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frieman, Matthew B" sort="Frieman, Matthew B" uniqKey="Frieman M" first="Matthew B" last="Frieman">Matthew B. Frieman</name>
<affiliation>
<nlm:affiliation>University of Maryland School of Medicine 685 West Baltimore St Baltimore, MD 21201.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24736006</idno>
<idno type="pmid">24736006</idno>
<idno type="doi">10.1016/j.vaccine.2014.04.016</idno>
<idno type="wicri:Area/PubMed/Corpus">001007</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001007</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice.</title>
<author>
<name sortKey="Coleman, Christopher M" sort="Coleman, Christopher M" uniqKey="Coleman C" first="Christopher M" last="Coleman">Christopher M. Coleman</name>
<affiliation>
<nlm:affiliation>University of Maryland School of Medicine 685 West Baltimore St Baltimore, MD 21201.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Ye V" sort="Liu, Ye V" uniqKey="Liu Y" first="Ye V" last="Liu">Ye V. Liu</name>
<affiliation>
<nlm:affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mu, Haiyan" sort="Mu, Haiyan" uniqKey="Mu H" first="Haiyan" last="Mu">Haiyan Mu</name>
<affiliation>
<nlm:affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Justin K" sort="Taylor, Justin K" uniqKey="Taylor J" first="Justin K" last="Taylor">Justin K. Taylor</name>
<affiliation>
<nlm:affiliation>University of Maryland School of Medicine 685 West Baltimore St Baltimore, MD 21201.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Massare, Michael" sort="Massare, Michael" uniqKey="Massare M" first="Michael" last="Massare">Michael Massare</name>
<affiliation>
<nlm:affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Flyer, David C" sort="Flyer, David C" uniqKey="Flyer D" first="David C" last="Flyer">David C. Flyer</name>
<affiliation>
<nlm:affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smith, Gale E" sort="Smith, Gale E" uniqKey="Smith G" first="Gale E" last="Smith">Gale E. Smith</name>
<affiliation>
<nlm:affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frieman, Matthew B" sort="Frieman, Matthew B" uniqKey="Frieman M" first="Matthew B" last="Frieman">Matthew B. Frieman</name>
<affiliation>
<nlm:affiliation>University of Maryland School of Medicine 685 West Baltimore St Baltimore, MD 21201.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Vaccine</title>
<idno type="eISSN">1873-2518</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adjuvants, Immunologic (administration & dosage)</term>
<term>Animals</term>
<term>Antibodies, Neutralizing (blood)</term>
<term>Antibodies, Viral (blood)</term>
<term>Coronavirus</term>
<term>Coronavirus Infections (prevention & control)</term>
<term>Cross Protection</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Nanoparticles</term>
<term>Neutralization Tests</term>
<term>Recombinant Proteins (biosynthesis)</term>
<term>Recombinant Proteins (immunology)</term>
<term>Spike Glycoprotein, Coronavirus (biosynthesis)</term>
<term>Spike Glycoprotein, Coronavirus (immunology)</term>
<term>Viral Vaccines (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Adjuvants, Immunologic</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Recombinant Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Antibodies, Neutralizing</term>
<term>Antibodies, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Recombinant Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Coronavirus</term>
<term>Cross Protection</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Nanoparticles</term>
<term>Neutralization Tests</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Development of vaccination strategies for emerging pathogens are particularly challenging because of the sudden nature of their emergence and the long process needed for traditional vaccine development. Therefore, there is a need for development of a rapid method of vaccine development that can respond to emerging pathogens in a short time frame. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in late 2012 demonstrate the importance of coronaviruses as emerging pathogens. The spike glycoproteins of coronaviruses reside on the surface of the virion and are responsible for virus entry. The spike glycoprotein is the major immunodominant antigen of coronaviruses and has proven to be an excellent target for vaccine designs that seek to block coronavirus entry and promote antibody targeting of infected cells. Vaccination strategies for coronaviruses have involved live attenuated virus, recombinant viruses, non-replicative virus-like particles expressing coronavirus proteins or DNA plasmids expressing coronavirus genes. None of these strategies has progressed to an approved human coronavirus vaccine in the ten years since SARS-CoV emerged. Here we describe a novel method for generating MERS-CoV and SARS-CoV full-length spike nanoparticles, which in combination with adjuvants are able to produce high titer antibodies in mice. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24736006</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-2518</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>26</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Vaccine</Title>
<ISOAbbreviation>Vaccine</ISOAbbreviation>
</Journal>
<ArticleTitle>Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice.</ArticleTitle>
<Pagination>
<MedlinePgn>3169-3174</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.vaccine.2014.04.016</ELocationID>
<Abstract>
<AbstractText>Development of vaccination strategies for emerging pathogens are particularly challenging because of the sudden nature of their emergence and the long process needed for traditional vaccine development. Therefore, there is a need for development of a rapid method of vaccine development that can respond to emerging pathogens in a short time frame. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in late 2012 demonstrate the importance of coronaviruses as emerging pathogens. The spike glycoproteins of coronaviruses reside on the surface of the virion and are responsible for virus entry. The spike glycoprotein is the major immunodominant antigen of coronaviruses and has proven to be an excellent target for vaccine designs that seek to block coronavirus entry and promote antibody targeting of infected cells. Vaccination strategies for coronaviruses have involved live attenuated virus, recombinant viruses, non-replicative virus-like particles expressing coronavirus proteins or DNA plasmids expressing coronavirus genes. None of these strategies has progressed to an approved human coronavirus vaccine in the ten years since SARS-CoV emerged. Here we describe a novel method for generating MERS-CoV and SARS-CoV full-length spike nanoparticles, which in combination with adjuvants are able to produce high titer antibodies in mice. </AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Coleman</LastName>
<ForeName>Christopher M</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>University of Maryland School of Medicine 685 West Baltimore St Baltimore, MD 21201.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Liu</LastName>
<ForeName>Ye V</ForeName>
<Initials>YV</Initials>
<AffiliationInfo>
<Affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mu</LastName>
<ForeName>Haiyan</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>Justin K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>University of Maryland School of Medicine 685 West Baltimore St Baltimore, MD 21201.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Massare</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Flyer</LastName>
<ForeName>David C</ForeName>
<Initials>DC</Initials>
<AffiliationInfo>
<Affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Smith</LastName>
<ForeName>Gale E</ForeName>
<Initials>GE</Initials>
<AffiliationInfo>
<Affiliation>Novavax, Inc. 22 Firstfield Rd Gaithersburg, MD 20852.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Frieman</LastName>
<ForeName>Matthew B</ForeName>
<Initials>MB</Initials>
<AffiliationInfo>
<Affiliation>University of Maryland School of Medicine 685 West Baltimore St Baltimore, MD 21201.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI095569</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Vaccine</MedlineTA>
<NlmUniqueID>8406899</NlmUniqueID>
<ISSNLinking>0264-410X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000276">Adjuvants, Immunologic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D057134">Antibodies, Neutralizing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000276" MajorTopicYN="N">Adjuvants, Immunologic</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057134" MajorTopicYN="N">Antibodies, Neutralizing</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="Y">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056738" MajorTopicYN="N">Cross Protection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053758" MajorTopicYN="Y">Nanoparticles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009500" MajorTopicYN="N">Neutralization Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="N">Viral Vaccines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Neutralizing antibody</Keyword>
<Keyword MajorTopicYN="N">Severe Acute Respiratory Syndrome Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Vaccine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>03</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24736006</ArticleId>
<ArticleId IdType="doi">10.1016/j.vaccine.2014.04.016</ArticleId>
<ArticleId IdType="pmc">PMC4058772</ArticleId>
<ArticleId IdType="mid">NIHMS584482</ArticleId>
<ArticleId IdType="pii">S0264-410X(14)00518-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2003 Jul 26;362(9380):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892955</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Expert Rev Vaccines. 2011 Apr;10(4):401-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21506635</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Vaccine Immunol. 2009 Jan;16(1):73-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987164</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Avian Dis. 2012 Dec;56(4):634-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23397833</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunology. 2010 Jun;130(2):254-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406307</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2004 Nov 12;324(2):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15474494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2006 Feb 13;24(7):1028-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2004 Apr 1;428(6982):561-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15024391</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2013 Jun 13;18(24):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23787161</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2008 Nov 25;26(50):6338-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18824060</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Nov;75(11):5306-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">214782</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Microbes Infect. 2005 May;7(5-6):882-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15878679</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2013 Sep 10;4(5):e00650-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023385</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 Nov;87(21):11950-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986586</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2013 Jan 7;31(3):524-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23153449</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Antivir Ther. 2007;12(7):1107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18018769</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virol J. 2012 Sep 21;9:215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22995185</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Genes. 2012 Apr;44(2):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22270324</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2006 Jan 30;24(5):652-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214268</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2008 Feb 6;26(6):797-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191004</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Mar;7(3):226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19198616</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2011 Dec;85(23):12201-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21937658</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Pathol. 2003 Jul;200(3):282-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12845623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viral Immunol. 2013 Apr;26(2):126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23573979</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2008 Jul 16;3(7):e2685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18628832</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>DNA Cell Biol. 2006 Dec;25(12):668-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17184168</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2014 Feb;95(Pt 2):408-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197535</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2013 Aug;19(8):952</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23921729</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunology. 2007 Dec;122(4):496-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17680799</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2011 Sep 2;29(38):6606-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762752</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 2006;66:193-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877062</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hum Vaccin Immunother. 2013 Sep;9(9):1877-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23877094</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(11):e50852</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23226404</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Thorac Dis. 2013 Aug;5 Suppl 2:S142-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23977435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2012 Nov 20;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2011 Oct 19;29(45):8049-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21864624</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2012;7(4):e35421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22536382</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2001-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001007 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001007 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24736006
   |texte=   Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24736006" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021