Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Systems approaches to Coronavirus pathogenesis.

Identifieur interne : 000F93 ( PubMed/Corpus ); précédent : 000F92; suivant : 000F94

Systems approaches to Coronavirus pathogenesis.

Auteurs : Alexandra Sch Fer ; Ralph S. Baric ; Martin T. Ferris

Source :

RBID : pubmed:24842079

English descriptors

Abstract

Coronaviruses comprise a large group of emergent human and animal pathogens, including the highly pathogenic SARS-CoV and MERS-CoV strains that cause significant morbidity and mortality in infected individuals, especially the elderly. As emergent viruses may cause episodic outbreaks of disease over time, human samples are limited. Systems biology and genetic technologies maximize opportunities for identifying critical host and viral genetic factors that regulate susceptibility and virus-induced disease severity. These approaches provide discovery platforms that highlight and allow targeted confirmation of critical targets for prophylactics and therapeutics, especially critical in an outbreak setting. Although poorly understood, it has long been recognized that host regulation of virus-associated disease severity is multigenic. The advent of systems genetic and biology resources provides new opportunities for deconvoluting the complex genetic interactions and expression networks that regulate pathogenic or protective host response patterns following virus infection. Using SARS-CoV as a model, dynamic transcriptional network changes and disease-associated phenotypes have been identified in different genetic backgrounds, leading to the promise of population-wide discovery of the underpinnings of Coronavirus pathogenesis.

DOI: 10.1016/j.coviro.2014.04.007
PubMed: 24842079

Links to Exploration step

pubmed:24842079

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Systems approaches to Coronavirus pathogenesis.</title>
<author>
<name sortKey="Sch Fer, Alexandra" sort="Sch Fer, Alexandra" uniqKey="Sch Fer A" first="Alexandra" last="Sch Fer">Alexandra Sch Fer</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferris, Martin T" sort="Ferris, Martin T" uniqKey="Ferris M" first="Martin T" last="Ferris">Martin T. Ferris</name>
<affiliation>
<nlm:affiliation>Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, United States. Electronic address: mtferris@unc.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24842079</idno>
<idno type="pmid">24842079</idno>
<idno type="doi">10.1016/j.coviro.2014.04.007</idno>
<idno type="wicri:Area/PubMed/Corpus">000F93</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Systems approaches to Coronavirus pathogenesis.</title>
<author>
<name sortKey="Sch Fer, Alexandra" sort="Sch Fer, Alexandra" uniqKey="Sch Fer A" first="Alexandra" last="Sch Fer">Alexandra Sch Fer</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, United States.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferris, Martin T" sort="Ferris, Martin T" uniqKey="Ferris M" first="Martin T" last="Ferris">Martin T. Ferris</name>
<affiliation>
<nlm:affiliation>Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, United States. Electronic address: mtferris@unc.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current opinion in virology</title>
<idno type="eISSN">1879-6265</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Coronavirus (physiology)</term>
<term>Coronavirus Infections (etiology)</term>
<term>Coronavirus Infections (virology)</term>
<term>Genetic Techniques</term>
<term>Genetics</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Systems Biology (methods)</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Systems Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Genetic Techniques</term>
<term>Genetics</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses comprise a large group of emergent human and animal pathogens, including the highly pathogenic SARS-CoV and MERS-CoV strains that cause significant morbidity and mortality in infected individuals, especially the elderly. As emergent viruses may cause episodic outbreaks of disease over time, human samples are limited. Systems biology and genetic technologies maximize opportunities for identifying critical host and viral genetic factors that regulate susceptibility and virus-induced disease severity. These approaches provide discovery platforms that highlight and allow targeted confirmation of critical targets for prophylactics and therapeutics, especially critical in an outbreak setting. Although poorly understood, it has long been recognized that host regulation of virus-associated disease severity is multigenic. The advent of systems genetic and biology resources provides new opportunities for deconvoluting the complex genetic interactions and expression networks that regulate pathogenic or protective host response patterns following virus infection. Using SARS-CoV as a model, dynamic transcriptional network changes and disease-associated phenotypes have been identified in different genetic backgrounds, leading to the promise of population-wide discovery of the underpinnings of Coronavirus pathogenesis. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24842079</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-6265</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Current opinion in virology</Title>
<ISOAbbreviation>Curr Opin Virol</ISOAbbreviation>
</Journal>
<ArticleTitle>Systems approaches to Coronavirus pathogenesis.</ArticleTitle>
<Pagination>
<MedlinePgn>61-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.coviro.2014.04.007</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1879-6257(14)00089-3</ELocationID>
<Abstract>
<AbstractText>Coronaviruses comprise a large group of emergent human and animal pathogens, including the highly pathogenic SARS-CoV and MERS-CoV strains that cause significant morbidity and mortality in infected individuals, especially the elderly. As emergent viruses may cause episodic outbreaks of disease over time, human samples are limited. Systems biology and genetic technologies maximize opportunities for identifying critical host and viral genetic factors that regulate susceptibility and virus-induced disease severity. These approaches provide discovery platforms that highlight and allow targeted confirmation of critical targets for prophylactics and therapeutics, especially critical in an outbreak setting. Although poorly understood, it has long been recognized that host regulation of virus-associated disease severity is multigenic. The advent of systems genetic and biology resources provides new opportunities for deconvoluting the complex genetic interactions and expression networks that regulate pathogenic or protective host response patterns following virus infection. Using SARS-CoV as a model, dynamic transcriptional network changes and disease-associated phenotypes have been identified in different genetic backgrounds, leading to the promise of population-wide discovery of the underpinnings of Coronavirus pathogenesis. </AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schäfer</LastName>
<ForeName>Alexandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferris</LastName>
<ForeName>Martin T</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, United States. Electronic address: mtferris@unc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U19 AI100625</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19AI100625</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Curr Opin Virol</MedlineTA>
<NlmUniqueID>101560941</NlmUniqueID>
<ISSNLinking>1879-6257</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000209" MajorTopicYN="Y">etiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005821" MajorTopicYN="N">Genetic Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005823" MajorTopicYN="N">Genetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049490" MajorTopicYN="Y">Systems Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24842079</ArticleId>
<ArticleId IdType="pii">S1879-6257(14)00089-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.coviro.2014.04.007</ArticleId>
<ArticleId IdType="pmc">PMC4076299</ArticleId>
<ArticleId IdType="mid">NIHMS598919</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8692-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17537853</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):20-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499378</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2014 May 12;184:1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24480588</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 2011 Dec;121(12):4921-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22105170</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Viral Immunol. 2011 Oct;24(5):421-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21958371</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunol Cell Biol. 2014 May-Jun;92(5):392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24518983</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2014 Apr 15;209(8):1227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277741</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2012 Feb;190(2):389-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345608</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2011 Jul 10;12(8):786-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743478</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>ILAR J. 2011;52(1):24-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21411855</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2011 Nov 15;2(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086488</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>G3 (Bethesda). 2012 Feb;2(2):153-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384393</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2010 Oct 26;1(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978541</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2012 Mar 25;484(7395):519-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22446628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vaccine. 2011 Sep 2;29(38):6670-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21745520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Oct 10;302(5643):276-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958366</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2014 Feb;14(2):140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24355866</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1002-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24371310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Genet. 2013 Dec 09;4:280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24367376</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2013 Jun 27;368(26):2487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718156</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hong Kong Med J. 2010;16(5 Suppl 4):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20864747</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Jul;11(7):455-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23728212</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2009 Oct;83(20):10417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19706712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 1996 Nov;2(11):1240-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8898752</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2003 May;9(5):548-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692541</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Front Genet. 2014 Jan 07;4:309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24432028</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2011 Jan 5;409(1):102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035159</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2012;8(4):e1002458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496633</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2012 Feb;190(2):437-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 2014 Mar 20;426(6):1178-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24370931</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>G3 (Bethesda). 2012 Feb;2(2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22384400</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2013 Nov;19(11):1819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24206838</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2013 Sep;13(9):752-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23891402</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2013;363:1-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22886541</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2012 Aug 20;13:411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22905720</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2013 Apr 30;4(3):e00165-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23631916</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Paediatr Respir Rev. 2004 Dec;5(4):262-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Feb;11(2):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23268232</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Paediatr Respir Rev. 2004 Dec;5(4):270-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531250</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2011 Oct;7(10):e1002315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22028656</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 2014;88:193-225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24373313</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Syst Biol. 2011 Nov 11;5:190</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22074594</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2014 Feb 04;5(1):e01102-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24496798</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Dec 12;8(12):e83381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24349500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2013 Jul 25;8(7):e69374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935999</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2013 Aug 1;369(5):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782161</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2006 May;80(9):4211-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16611880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2013 Aug 06;4(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23919993</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2013 Apr;87(7):3885-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23365422</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2007 Jul 15;196(2):271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17570115</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Virol. 2003 Dec;28(3):245-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14522062</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3507-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23401516</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2011 Mar 01;2(1):e00325-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21285433</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Immunol. 2013;33(5):435-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24099302</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Host Microbe. 2009 Sep 17;6(3):207-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19664979</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Virol. 2013 May;85(5):808-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23508906</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000F93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24842079
   |texte=   Systems approaches to Coronavirus pathogenesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24842079" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021