Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease.

Identifieur interne : 000F89 ( PubMed/Corpus ); précédent : 000F88; suivant : 000F90

Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease.

Auteurs : Kiira Ratia ; Andrew Kilianski ; Yahira M. Baez-Santos ; Susan C. Baker ; Andrew Mesecar

Source :

RBID : pubmed:24854014

English descriptors

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a papain-like protease (PLpro) with both deubiquitinating (DUB) and deISGylating activities that are proposed to counteract the post-translational modification of signaling molecules that activate the innate immune response. Here we examine the structural basis for PLpro's ubiquitin chain and interferon stimulated gene 15 (ISG15) specificity. We present the X-ray crystal structure of PLpro in complex with ubiquitin-aldehyde and model the interaction of PLpro with other ubiquitin-chain and ISG15 substrates. We show that PLpro greatly prefers K48- to K63-linked ubiquitin chains, and ISG15-based substrates to those that are mono-ubiquitinated. We propose that PLpro's higher affinity for K48-linked ubiquitin chains and ISG15 stems from a bivalent mechanism of binding, where two ubiquitin-like domains prefer to bind in the palm domain of PLpro with the most distal ubiquitin domain interacting with a "ridge" region of the thumb domain. Mutagenesis of residues within this ridge region revealed that these mutants retain viral protease activity and the ability to catalyze hydrolysis of mono-ubiquitin. However, a select number of these mutants have a significantly reduced ability to hydrolyze the substrate ISG15-AMC, or be inhibited by K48-linked diubuiquitin. For these latter residues, we found that PLpro antagonism of the nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway is abrogated. This identification of key and unique sites in PLpro required for recognition and processing of diubiquitin and ISG15 versus mono-ubiquitin and protease activity provides new insight into ubiquitin-chain and ISG15 recognition and highlights a role for PLpro DUB and deISGylase activity in antagonism of the innate immune response.

DOI: 10.1371/journal.ppat.1004113
PubMed: 24854014

Links to Exploration step

pubmed:24854014

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease.</title>
<author>
<name sortKey="Ratia, Kiira" sort="Ratia, Kiira" uniqKey="Ratia K" first="Kiira" last="Ratia">Kiira Ratia</name>
<affiliation>
<nlm:affiliation>Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kilianski, Andrew" sort="Kilianski, Andrew" uniqKey="Kilianski A" first="Andrew" last="Kilianski">Andrew Kilianski</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baez Santos, Yahira M" sort="Baez Santos, Yahira M" uniqKey="Baez Santos Y" first="Yahira M" last="Baez-Santos">Yahira M. Baez-Santos</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mesecar, Andrew" sort="Mesecar, Andrew" uniqKey="Mesecar A" first="Andrew" last="Mesecar">Andrew Mesecar</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24854014</idno>
<idno type="pmid">24854014</idno>
<idno type="doi">10.1371/journal.ppat.1004113</idno>
<idno type="wicri:Area/PubMed/Corpus">000F89</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease.</title>
<author>
<name sortKey="Ratia, Kiira" sort="Ratia, Kiira" uniqKey="Ratia K" first="Kiira" last="Ratia">Kiira Ratia</name>
<affiliation>
<nlm:affiliation>Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kilianski, Andrew" sort="Kilianski, Andrew" uniqKey="Kilianski A" first="Andrew" last="Kilianski">Andrew Kilianski</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baez Santos, Yahira M" sort="Baez Santos, Yahira M" uniqKey="Baez Santos Y" first="Yahira M" last="Baez-Santos">Yahira M. Baez-Santos</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baker, Susan C" sort="Baker, Susan C" uniqKey="Baker S" first="Susan C" last="Baker">Susan C. Baker</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mesecar, Andrew" sort="Mesecar, Andrew" uniqKey="Mesecar A" first="Andrew" last="Mesecar">Andrew Mesecar</name>
<affiliation>
<nlm:affiliation>Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Catalytic Domain</term>
<term>Coronavirus Infections (metabolism)</term>
<term>Coronavirus Infections (virology)</term>
<term>Crystallography, X-Ray</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (genetics)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Cytokines (metabolism)</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
<term>Protein Processing, Post-Translational</term>
<term>SARS Virus (enzymology)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (metabolism)</term>
<term>Substrate Specificity</term>
<term>Ubiquitin (metabolism)</term>
<term>Ubiquitination (genetics)</term>
<term>Ubiquitins (metabolism)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>SARS Virus</term>
<term>Ubiquitination</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Cysteine Endopeptidases</term>
<term>Cytokines</term>
<term>SARS Virus</term>
<term>Ubiquitin</term>
<term>Ubiquitins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Catalytic Domain</term>
<term>Crystallography, X-Ray</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Protein Conformation</term>
<term>Protein Processing, Post-Translational</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a papain-like protease (PLpro) with both deubiquitinating (DUB) and deISGylating activities that are proposed to counteract the post-translational modification of signaling molecules that activate the innate immune response. Here we examine the structural basis for PLpro's ubiquitin chain and interferon stimulated gene 15 (ISG15) specificity. We present the X-ray crystal structure of PLpro in complex with ubiquitin-aldehyde and model the interaction of PLpro with other ubiquitin-chain and ISG15 substrates. We show that PLpro greatly prefers K48- to K63-linked ubiquitin chains, and ISG15-based substrates to those that are mono-ubiquitinated. We propose that PLpro's higher affinity for K48-linked ubiquitin chains and ISG15 stems from a bivalent mechanism of binding, where two ubiquitin-like domains prefer to bind in the palm domain of PLpro with the most distal ubiquitin domain interacting with a "ridge" region of the thumb domain. Mutagenesis of residues within this ridge region revealed that these mutants retain viral protease activity and the ability to catalyze hydrolysis of mono-ubiquitin. However, a select number of these mutants have a significantly reduced ability to hydrolyze the substrate ISG15-AMC, or be inhibited by K48-linked diubuiquitin. For these latter residues, we found that PLpro antagonism of the nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway is abrogated. This identification of key and unique sites in PLpro required for recognition and processing of diubiquitin and ISG15 versus mono-ubiquitin and protease activity provides new insight into ubiquitin-chain and ISG15 recognition and highlights a role for PLpro DUB and deISGylase activity in antagonism of the innate immune response. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24854014</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease.</ArticleTitle>
<Pagination>
<MedlinePgn>e1004113</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1004113</ELocationID>
<Abstract>
<AbstractText>Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a papain-like protease (PLpro) with both deubiquitinating (DUB) and deISGylating activities that are proposed to counteract the post-translational modification of signaling molecules that activate the innate immune response. Here we examine the structural basis for PLpro's ubiquitin chain and interferon stimulated gene 15 (ISG15) specificity. We present the X-ray crystal structure of PLpro in complex with ubiquitin-aldehyde and model the interaction of PLpro with other ubiquitin-chain and ISG15 substrates. We show that PLpro greatly prefers K48- to K63-linked ubiquitin chains, and ISG15-based substrates to those that are mono-ubiquitinated. We propose that PLpro's higher affinity for K48-linked ubiquitin chains and ISG15 stems from a bivalent mechanism of binding, where two ubiquitin-like domains prefer to bind in the palm domain of PLpro with the most distal ubiquitin domain interacting with a "ridge" region of the thumb domain. Mutagenesis of residues within this ridge region revealed that these mutants retain viral protease activity and the ability to catalyze hydrolysis of mono-ubiquitin. However, a select number of these mutants have a significantly reduced ability to hydrolyze the substrate ISG15-AMC, or be inhibited by K48-linked diubuiquitin. For these latter residues, we found that PLpro antagonism of the nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway is abrogated. This identification of key and unique sites in PLpro required for recognition and processing of diubiquitin and ISG15 versus mono-ubiquitin and protease activity provides new insight into ubiquitin-chain and ISG15 recognition and highlights a role for PLpro DUB and deISGylase activity in antagonism of the innate immune response. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ratia</LastName>
<ForeName>Kiira</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, Chicago, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kilianski</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baez-Santos</LastName>
<ForeName>Yahira M</ForeName>
<Initials>YM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Susan C</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mesecar</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI060915</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI085089</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014452">Ubiquitins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>60267-61-0</RegistryNumber>
<NameOfSubstance UI="C074034">ISG15 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025801" MajorTopicYN="N">Ubiquitin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054875" MajorTopicYN="Y">Ubiquitination</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014452" MajorTopicYN="N">Ubiquitins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>10</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>03</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24854014</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1004113</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-13-02700</ArticleId>
<ArticleId IdType="pmc">PMC4031219</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Jan;55(Pt 1):247-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Sep 17;20(18):5187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11566882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jun;76(12):6323-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12021365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Dec 27;111(7):1041-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12507430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2003 Sep;84(Pt 9):2305-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):13600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Apr;79(7):4550-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15767458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2005 May;41(1):207-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15915565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 22;280(29):27356-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Aug;6(8):599-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16064136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Aug;6(8):610-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16064137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Aug 19;19(4):547-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16109378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Nov 2;24(21):3747-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16211010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15582-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2005 Dec;5(12):941-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;399:37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16338347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2006 Aug;14(8):1293-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 8;281(49):38061-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17035239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Mar 16;367(1):204-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17240395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Mar 21;26(6):1532-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17318178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Oct 1;466(1):8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32208-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Dec 7;318(5856):1628-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2007 Dec 13;2(6):404-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18078692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Feb 29;29(4):451-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18313383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2008 Jul;8(7):501-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18535581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 18;455(7211):358-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18758443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Mar 20;136(6):1098-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19303852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jul;83(13):6689-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19369340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2009 May;10(5):466-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19373254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19461840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Aug;10(8):550-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19626045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Oct 9;392(5):1117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19664638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Mar 3;29(5):943-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Mar 12;285(11):7852-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 May;84(9):4619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2010 May;30(10):2424-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20308324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Jun 11;38(5):722-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Apr;85(7):3621-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21228232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21245344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2228-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21266548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2011 Apr;12(4):350-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21399617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Dec;85(23):12201-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21937658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2011 Dec 09;12(1):35-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22158412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2012 Mar;246(1):107-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22435550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2012;81:291-322</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22482907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2012;81:203-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22524316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Dec 13;492(7428):266-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23201676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Feb 1;339(6119):590-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23287719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Apr;87(7):3815-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23345508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):E838-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23401522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Aug 15;262(23):11315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2440890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 18;236(2):601-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Mar;16(3):1058-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8622650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Oct 1;35(39):12893-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8841133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Feb 17;37(7):1868-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9485312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Mar 3;37(9):2925-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9485444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1998;67:425-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9759494</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000F89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:24854014
   |texte=   Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:24854014" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021