Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection.

Identifieur interne : 000F33 ( PubMed/Corpus ); précédent : 000F32; suivant : 000F34

Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection.

Auteurs : Kevin Maringer ; Ana Fernandez-Sesma

Source :

RBID : pubmed:25212897

English descriptors

Abstract

STING has emerged in recent years as an important signalling adaptor in the activation of type I interferon responses during infection with DNA viruses and bacteria. An increasing body of evidence suggests that STING also modulates responses to RNA viruses, though the mechanisms remain less clear. In this review, we give a brief overview of the ways in which STING facilitates sensing of RNA viruses. These include modulation of RIG-I-dependent responses through STING's interaction with MAVS, and more speculative mechanisms involving the DNA sensor cGAS and sensing of membrane remodelling events. We then provide an in-depth literature review to summarise the known mechanisms by which RNA viruses of the families Flaviviridae and Coronaviridae evade sensing through STING. Our own work has shown that the NS2B/3 protease complex of the flavivirus dengue virus binds and cleaves STING, and that an inability to degrade murine STING may contribute to host restriction in this virus. We contrast this to the mechanism employed by the distantly related hepacivirus hepatitis C virus, in which STING is bound and inactivated by the NS4B protein. Finally, we discuss STING antagonism in the coronaviruses SARS coronavirus and human coronavirus NL63, which disrupt K63-linked polyubiquitination and dimerisation of STING (both of which are required for STING-mediated activation of IRF-3) via their papain-like proteases. We draw parallels with less-well characterised mechanisms of STING antagonism in related viruses, and place our current knowledge in the context of species tropism restrictions that potentially affect the emergence of new human pathogens.

DOI: 10.1016/j.cytogfr.2014.08.004
PubMed: 25212897

Links to Exploration step

pubmed:25212897

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection.</title>
<author>
<name sortKey="Maringer, Kevin" sort="Maringer, Kevin" uniqKey="Maringer K" first="Kevin" last="Maringer">Kevin Maringer</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernandez Sesma, Ana" sort="Fernandez Sesma, Ana" uniqKey="Fernandez Sesma A" first="Ana" last="Fernandez-Sesma">Ana Fernandez-Sesma</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address: ana.sesma@mssm.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25212897</idno>
<idno type="pmid">25212897</idno>
<idno type="doi">10.1016/j.cytogfr.2014.08.004</idno>
<idno type="wicri:Area/PubMed/Corpus">000F33</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000F33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection.</title>
<author>
<name sortKey="Maringer, Kevin" sort="Maringer, Kevin" uniqKey="Maringer K" first="Kevin" last="Maringer">Kevin Maringer</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernandez Sesma, Ana" sort="Fernandez Sesma, Ana" uniqKey="Fernandez Sesma A" first="Ana" last="Fernandez-Sesma">Ana Fernandez-Sesma</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address: ana.sesma@mssm.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cytokine & growth factor reviews</title>
<idno type="eISSN">1879-0305</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Coronavirus NL63, Human (genetics)</term>
<term>Coronavirus NL63, Human (immunology)</term>
<term>Dengue (genetics)</term>
<term>Dengue (immunology)</term>
<term>Dengue Virus (genetics)</term>
<term>Dengue Virus (immunology)</term>
<term>Humans</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (immunology)</term>
<term>Mice</term>
<term>Nucleotidyltransferases (genetics)</term>
<term>Nucleotidyltransferases (immunology)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (immunology)</term>
<term>Severe Acute Respiratory Syndrome (genetics)</term>
<term>Severe Acute Respiratory Syndrome (immunology)</term>
<term>Signal Transduction (genetics)</term>
<term>Signal Transduction (immunology)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Membrane Proteins</term>
<term>Nucleotidyltransferases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus NL63, Human</term>
<term>Dengue</term>
<term>Dengue Virus</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Coronavirus NL63, Human</term>
<term>Dengue</term>
<term>Dengue Virus</term>
<term>Membrane Proteins</term>
<term>Nucleotidyltransferases</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome</term>
<term>Signal Transduction</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Mice</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">STING has emerged in recent years as an important signalling adaptor in the activation of type I interferon responses during infection with DNA viruses and bacteria. An increasing body of evidence suggests that STING also modulates responses to RNA viruses, though the mechanisms remain less clear. In this review, we give a brief overview of the ways in which STING facilitates sensing of RNA viruses. These include modulation of RIG-I-dependent responses through STING's interaction with MAVS, and more speculative mechanisms involving the DNA sensor cGAS and sensing of membrane remodelling events. We then provide an in-depth literature review to summarise the known mechanisms by which RNA viruses of the families Flaviviridae and Coronaviridae evade sensing through STING. Our own work has shown that the NS2B/3 protease complex of the flavivirus dengue virus binds and cleaves STING, and that an inability to degrade murine STING may contribute to host restriction in this virus. We contrast this to the mechanism employed by the distantly related hepacivirus hepatitis C virus, in which STING is bound and inactivated by the NS4B protein. Finally, we discuss STING antagonism in the coronaviruses SARS coronavirus and human coronavirus NL63, which disrupt K63-linked polyubiquitination and dimerisation of STING (both of which are required for STING-mediated activation of IRF-3) via their papain-like proteases. We draw parallels with less-well characterised mechanisms of STING antagonism in related viruses, and place our current knowledge in the context of species tropism restrictions that potentially affect the emergence of new human pathogens. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25212897</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0305</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Cytokine & growth factor reviews</Title>
<ISOAbbreviation>Cytokine Growth Factor Rev.</ISOAbbreviation>
</Journal>
<ArticleTitle>Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection.</ArticleTitle>
<Pagination>
<MedlinePgn>669-79</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.cytogfr.2014.08.004</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1359-6101(14)00087-2</ELocationID>
<Abstract>
<AbstractText>STING has emerged in recent years as an important signalling adaptor in the activation of type I interferon responses during infection with DNA viruses and bacteria. An increasing body of evidence suggests that STING also modulates responses to RNA viruses, though the mechanisms remain less clear. In this review, we give a brief overview of the ways in which STING facilitates sensing of RNA viruses. These include modulation of RIG-I-dependent responses through STING's interaction with MAVS, and more speculative mechanisms involving the DNA sensor cGAS and sensing of membrane remodelling events. We then provide an in-depth literature review to summarise the known mechanisms by which RNA viruses of the families Flaviviridae and Coronaviridae evade sensing through STING. Our own work has shown that the NS2B/3 protease complex of the flavivirus dengue virus binds and cleaves STING, and that an inability to degrade murine STING may contribute to host restriction in this virus. We contrast this to the mechanism employed by the distantly related hepacivirus hepatitis C virus, in which STING is bound and inactivated by the NS4B protein. Finally, we discuss STING antagonism in the coronaviruses SARS coronavirus and human coronavirus NL63, which disrupt K63-linked polyubiquitination and dimerisation of STING (both of which are required for STING-mediated activation of IRF-3) via their papain-like proteases. We draw parallels with less-well characterised mechanisms of STING antagonism in related viruses, and place our current knowledge in the context of species tropism restrictions that potentially affect the emergence of new human pathogens. </AbstractText>
<CopyrightInformation>Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Maringer</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernandez-Sesma</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address: ana.sesma@mssm.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>1R01AI073450</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI073450</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN266200700010C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HHSN266200700010C</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>096062</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>1P01AI090935</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 AI090935</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Cytokine Growth Factor Rev</MedlineTA>
<NlmUniqueID>9612306</NlmUniqueID>
<ISSNLinking>1359-6101</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C530855">MPYS protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C532857">Tmem173 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="C578390">MB21D1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D009713">Nucleotidyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058957" MajorTopicYN="N">Coronavirus NL63, Human</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003715" MajorTopicYN="N">Dengue</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003716" MajorTopicYN="N">Dengue Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009713" MajorTopicYN="N">Nucleotidyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Dengue</Keyword>
<Keyword MajorTopicYN="N">Hepatitis C virus</Keyword>
<Keyword MajorTopicYN="N">Immune evasion</Keyword>
<Keyword MajorTopicYN="N">SARS coronavirus</Keyword>
<Keyword MajorTopicYN="N">STING</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25212897</ArticleId>
<ArticleId IdType="pii">S1359-6101(14)00087-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.cytogfr.2014.08.004</ArticleId>
<ArticleId IdType="pmc">PMC4330990</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2013 Jul;19(7):869-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23836237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2007 Oct 1;466(1):8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2000 Jul;2(9):1041-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10967284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(2):e17192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21364999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Feb;83(3):1299-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jun 20;498(7454):332-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23722159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Comp Immunol. 2014 Jul;45(1):163-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24631580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 30;103(22):8499-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16707574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2014 Aug;20:69-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24908561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2004 Oct;2(10):789-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15378043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2014 Dec;25(6):631-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24929887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Trop Med Hyg. 1952 Jan;1(1):51-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14903435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunobiology. 2013 Nov;218(11):1312-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23962476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Infect Dis. 2003 Dec;16(6):565-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14624107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ther Adv Vaccines. 2014 Jan;2(1):3-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24757522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Feb 15;339(6121):786-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23258413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2012 Jun 19;30(29):4301-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22682286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32208-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2009 Feb;21(1):3-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Oct 8;461(7265):788-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19776740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 12;312(5775):879-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 26;106(21):8653-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19433799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2013 Jan;57(1):46-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22911572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2008 Oct 17;29(4):538-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2004 Jul;5(7):730-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Immun. 2011 Jun;12(4):263-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Jul;94(Pt 7):1554-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23596270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Nov 18;8(5):410-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21075352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Apr 25;496(7446):504-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23563266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2007 Dec;88(Pt 12):3323-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Mar;95(Pt 3):614-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24362959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Sep;84(18):9318-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20610717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Comp Immunol. 2010 Aug;34(8):847-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20346968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1990;44:649-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2174669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e30802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22312431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 May;88(10):5209-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24600003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Oct 2;455(7213):674-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18724357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Dec;80(23):11418-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 1998 Jul;11(3):480-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9665979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2012 Nov 3;380(9853):1535-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22975339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Virol. 2013 May 12;2(2):32-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24175228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):545-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17683970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Liver Int. 2009 Jan;29 Suppl 1:74-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jan;4(1):62-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(6):e1002780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22761576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2009 Feb;20(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19211297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Jan 30;505(7485):691-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24284630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 Mar 20;426(6):1198-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24184198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Apr 28;472(7344):481-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 17;287(34):28646-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2012 Jun 29;36(6):1073-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22579474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2012 Aug;13(8):737-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22706339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S98-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 May;84(9):4619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2010 Nov 24;33(5):765-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21074459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatol Int. 2007 Jun;1(2):302-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19669354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):9760-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20660196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Oct;80(20):10208-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 May;84(9):4845-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20164230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2014 May;5(5):369-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24622840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jul 24;454(7203):523-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18548002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Feb 1;401(3):743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17067286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2012;2:347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22470840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 20;437(7062):1167-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16177806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 2013 Jul;59(1):52-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23542348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2011 May;90(2):93-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21295075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2008 Nov;18(11):1105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 Jan 16;40(1):13-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24439265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(10):e1002934</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23055924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Apr 11;50(1):5-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23478444</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000F33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25212897
   |texte=   Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25212897" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021