Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity.

Identifieur interne : 000E94 ( PubMed/Corpus ); précédent : 000E93; suivant : 000E95

The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity.

Auteurs : Krystal Matthews ; Alexandra Sch Fer ; Alissa Pham ; Matthew Frieman

Source :

RBID : pubmed:25481026

English descriptors

Abstract

The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction.

DOI: 10.1186/s12985-014-0209-9
PubMed: 25481026

Links to Exploration step

pubmed:25481026

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity.</title>
<author>
<name sortKey="Matthews, Krystal" sort="Matthews, Krystal" uniqKey="Matthews K" first="Krystal" last="Matthews">Krystal Matthews</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St., Room 380, Baltimore, MD, 21201, USA. kmatthews@som.umaryland.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sch Fer, Alexandra" sort="Sch Fer, Alexandra" uniqKey="Sch Fer A" first="Alexandra" last="Sch Fer">Alexandra Sch Fer</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC, 27599, USA. aschaefe@email.unc.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pham, Alissa" sort="Pham, Alissa" uniqKey="Pham A" first="Alissa" last="Pham">Alissa Pham</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA. alissapham@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St., Room 380, Baltimore, MD, 21201, USA. mfrieman@som.umaryland.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25481026</idno>
<idno type="pmid">25481026</idno>
<idno type="doi">10.1186/s12985-014-0209-9</idno>
<idno type="wicri:Area/PubMed/Corpus">000E94</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity.</title>
<author>
<name sortKey="Matthews, Krystal" sort="Matthews, Krystal" uniqKey="Matthews K" first="Krystal" last="Matthews">Krystal Matthews</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St., Room 380, Baltimore, MD, 21201, USA. kmatthews@som.umaryland.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sch Fer, Alexandra" sort="Sch Fer, Alexandra" uniqKey="Sch Fer A" first="Alexandra" last="Sch Fer">Alexandra Sch Fer</name>
<affiliation>
<nlm:affiliation>Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC, 27599, USA. aschaefe@email.unc.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pham, Alissa" sort="Pham, Alissa" uniqKey="Pham A" first="Alissa" last="Pham">Alissa Pham</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA. alissapham@gmail.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frieman, Matthew" sort="Frieman, Matthew" uniqKey="Frieman M" first="Matthew" last="Frieman">Matthew Frieman</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St., Room 380, Baltimore, MD, 21201, USA. mfrieman@som.umaryland.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Virology journal</title>
<idno type="eISSN">1743-422X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Line</term>
<term>Chromatin Immunoprecipitation</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>Humans</term>
<term>Interferon Regulatory Factor-3 (antagonists & inhibitors)</term>
<term>SARS Virus (enzymology)</term>
<term>Transfection</term>
<term>Ubiquitin (metabolism)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Interferon Regulatory Factor-3</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Ubiquitin</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Chromatin Immunoprecipitation</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>Humans</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25481026</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1743-422X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Virology journal</Title>
<ISOAbbreviation>Virol. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity.</ArticleTitle>
<Pagination>
<MedlinePgn>209</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12985-014-0209-9</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">We have used plasmids expressing PLpro and IRF3 including an IRF3 mutant that is constitutively active, called IRF3(5D). In these experiments we utilize transfections, chromatin immunoprecipitation, Electro-mobility Shift Assays (EMSA) and protein localization to identify where IRF3 and IRF3(5D) are inhibited by PLpro.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here we show that PLpro also inhibits IRF3 activation at a step after phosphorylation and that this inhibition is dependent on the de-ubiquitination (DUB) activity of PLpro. We found that PLpro is able to block the type I IFN induction of a constitutively active IRF3, but does not inhibit IRF3 dimerization, nuclear localization or DNA binding. However, inhibition of PLpro's DUB activity by mutagenesis blocked the IRF3 inhibition activity of PLpro, suggesting a role for IRF3 ubiquitination in induction of a type I IFN innate immune response.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">These results demonstrate an additional mechanism that PLpro is able to inhibit IRF3 signaling. These data suggest novel innate immune antagonism activities of PLpro that may contribute to SARS-CoV pathogenesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Matthews</LastName>
<ForeName>Krystal</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St., Room 380, Baltimore, MD, 21201, USA. kmatthews@som.umaryland.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schäfer</LastName>
<ForeName>Alexandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina, 3304 Michael Hooker Research Building, Chapel Hill, NC, 27599, USA. aschaefe@email.unc.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pham</LastName>
<ForeName>Alissa</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA. alissapham@gmail.com.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Current Address: NYU Langone Medical Center, Department of Pathology, 538 Medical Science Building, New York, NY, 10016, USA. alissapham@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Frieman</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Maryland at Baltimore, 685 West Baltimore St., Room 380, Baltimore, MD, 21201, USA. mfrieman@som.umaryland.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K22 AI077797</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K22AI077797</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Virol J</MedlineTA>
<NlmUniqueID>101231645</NlmUniqueID>
<ISSNLinking>1743-422X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C494232">IRF3 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050838">Interferon Regulatory Factor-3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047369" MajorTopicYN="N">Chromatin Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024202" MajorTopicYN="N">Electrophoretic Mobility Shift Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050838" MajorTopicYN="N">Interferon Regulatory Factor-3</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025801" MajorTopicYN="N">Ubiquitin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25481026</ArticleId>
<ArticleId IdType="doi">10.1186/s12985-014-0209-9</ArticleId>
<ArticleId IdType="pii">s12985-014-0209-9</ArticleId>
<ArticleId IdType="pmc">PMC4272517</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Immunol. 2000 Apr 15;164(8):4220-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10754318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2001 Jun-Sep;12(2-3):143-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11325598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2004 Aug;61(16):2100-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 May;18(5):2986-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9566918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Dec;78(24):13600-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15564471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Sep;79(17):11335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15189-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Dec 2;310(5753):1499-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Mar;80(6):2684-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16501078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):548-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(3):1220-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(11):6007-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Sep;81(18):9812-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):11620-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 2;282(44):32208-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17761676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2007 Sep;13(9):1295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2008 Apr;14(4):626-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Feb;83(4):1881-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jul;83(13):6689-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19369340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 May;84(9):4619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20181693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):13004-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2011 May;92(Pt 5):1127-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21270289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e30802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22312431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2012 Jun 29;36(6):959-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22705106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Interferon Cytokine Res. 2012 Sep;32(9):393-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22817838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012;17(40):20290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2014 Apr;24(4):400-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24366338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2009 Aug;90(Pt 8):2015-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19357225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Apr;87(7):3885-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23365422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Jun;19(6):989-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23739658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Oct;19(10):1697-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24050621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2001 Apr;6(4):375-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11318879</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25481026
   |texte=   The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25481026" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021