Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins.

Identifieur interne : 000E42 ( PubMed/Corpus ); précédent : 000E41; suivant : 000E43

Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins.

Auteurs : Denong Wang ; Jin Tang ; Jiulai Tang ; Lai-Xi Wang

Source :

RBID : pubmed:25774492

English descriptors

Abstract

Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA), for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV), and human cytomegalovirus (HCMV). In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9)-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn). These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

DOI: 10.3390/molecules20034610
PubMed: 25774492

Links to Exploration step

pubmed:25774492

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins.</title>
<author>
<name sortKey="Wang, Denong" sort="Wang, Denong" uniqKey="Wang D" first="Denong" last="Wang">Denong Wang</name>
<affiliation>
<nlm:affiliation>Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA 94025, USA. denong.wang@sri.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Jin" sort="Tang, Jin" uniqKey="Tang J" first="Jin" last="Tang">Jin Tang</name>
<affiliation>
<nlm:affiliation>Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA 94025, USA. jiafengjushi@live.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Jiulai" sort="Tang, Jiulai" uniqKey="Tang J" first="Jiulai" last="Tang">Jiulai Tang</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China. tangjiulai8888@21cn.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lai Xi" sort="Wang, Lai Xi" uniqKey="Wang L" first="Lai-Xi" last="Wang">Lai-Xi Wang</name>
<affiliation>
<nlm:affiliation>Instituteof Human Virology, Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. LWang@ihv.umaryland.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25774492</idno>
<idno type="pmid">25774492</idno>
<idno type="doi">10.3390/molecules20034610</idno>
<idno type="wicri:Area/PubMed/Corpus">000E42</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins.</title>
<author>
<name sortKey="Wang, Denong" sort="Wang, Denong" uniqKey="Wang D" first="Denong" last="Wang">Denong Wang</name>
<affiliation>
<nlm:affiliation>Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA 94025, USA. denong.wang@sri.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Jin" sort="Tang, Jin" uniqKey="Tang J" first="Jin" last="Tang">Jin Tang</name>
<affiliation>
<nlm:affiliation>Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA 94025, USA. jiafengjushi@live.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tang, Jiulai" sort="Tang, Jiulai" uniqKey="Tang J" first="Jiulai" last="Tang">Jiulai Tang</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China. tangjiulai8888@21cn.com.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Lai Xi" sort="Wang, Lai Xi" uniqKey="Wang L" first="Lai-Xi" last="Wang">Lai-Xi Wang</name>
<affiliation>
<nlm:affiliation>Instituteof Human Virology, Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. LWang@ihv.umaryland.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecules (Basel, Switzerland)</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Antibodies, Monoclonal (chemistry)</term>
<term>Antibodies, Monoclonal (metabolism)</term>
<term>Broadly Neutralizing Antibodies</term>
<term>Conserved Sequence</term>
<term>Cytomegalovirus (genetics)</term>
<term>Cytomegalovirus (immunology)</term>
<term>Epitope Mapping</term>
<term>Glycosylation</term>
<term>HEK293 Cells</term>
<term>HIV Antibodies</term>
<term>HIV-1 (genetics)</term>
<term>HIV-1 (immunology)</term>
<term>Humans</term>
<term>Mannose-Binding Lectins (chemistry)</term>
<term>Mannose-Binding Lectins (metabolism)</term>
<term>Phylogeny</term>
<term>Pilot Projects</term>
<term>Plant Lectins (chemistry)</term>
<term>Plant Lectins (metabolism)</term>
<term>Polysaccharides (chemistry)</term>
<term>Polysaccharides (immunology)</term>
<term>Polysaccharides (metabolism)</term>
<term>Protein Array Analysis (methods)</term>
<term>SARS Virus (genetics)</term>
<term>SARS Virus (immunology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Mannose-Binding Lectins</term>
<term>Plant Lectins</term>
<term>Polysaccharides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Polysaccharides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antibodies, Monoclonal</term>
<term>Mannose-Binding Lectins</term>
<term>Plant Lectins</term>
<term>Polysaccharides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cytomegalovirus</term>
<term>HIV-1</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Cytomegalovirus</term>
<term>HIV-1</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Protein Array Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Broadly Neutralizing Antibodies</term>
<term>Conserved Sequence</term>
<term>Epitope Mapping</term>
<term>Glycosylation</term>
<term>HEK293 Cells</term>
<term>HIV Antibodies</term>
<term>Humans</term>
<term>Phylogeny</term>
<term>Pilot Projects</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA), for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV), and human cytomegalovirus (HCMV). In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9)-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn). These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25774492</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-3049</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Molecules (Basel, Switzerland)</Title>
<ISOAbbreviation>Molecules</ISOAbbreviation>
</Journal>
<ArticleTitle>Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins.</ArticleTitle>
<Pagination>
<MedlinePgn>4610-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/molecules20034610</ELocationID>
<Abstract>
<AbstractText>Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA), for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV), and human cytomegalovirus (HCMV). In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9)-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn). These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Denong</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA 94025, USA. denong.wang@sri.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Jin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, CA 94025, USA. jiafengjushi@live.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Jiulai</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China. tangjiulai8888@21cn.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Lai-Xi</ForeName>
<Initials>LX</Initials>
<AffiliationInfo>
<Affiliation>Instituteof Human Virology, Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. LWang@ihv.umaryland.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, MD 20742, USA. LWang@ihv.umaryland.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI113896</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AI113896</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56AI108388</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 AI108388</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 CA128416</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Molecules</MedlineTA>
<NlmUniqueID>100964009</NlmUniqueID>
<ISSNLinking>1420-3049</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C529157">2G12 monoclonal antibody</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000911">Antibodies, Monoclonal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000080908">Broadly Neutralizing Antibodies</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015483">HIV Antibodies</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037241">Mannose-Binding Lectins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037121">Plant Lectins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C063117">snowdrop lectin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000911" MajorTopicYN="N">Antibodies, Monoclonal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000080908" MajorTopicYN="N">Broadly Neutralizing Antibodies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="Y">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003587" MajorTopicYN="N">Cytomegalovirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018604" MajorTopicYN="N">Epitope Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015483" MajorTopicYN="N">HIV Antibodies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015497" MajorTopicYN="N">HIV-1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037241" MajorTopicYN="N">Mannose-Binding Lectins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010865" MajorTopicYN="N">Pilot Projects</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037121" MajorTopicYN="N">Plant Lectins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040081" MajorTopicYN="N">Protein Array Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25774492</ArticleId>
<ArticleId IdType="pii">molecules20034610</ArticleId>
<ArticleId IdType="doi">10.3390/molecules20034610</ArticleId>
<ArticleId IdType="pmc">PMC4633014</ArticleId>
<ArticleId IdType="mid">NIHMS734106</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Antiviral Res. 2007 Sep;75(3):179-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17428553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2004 Jul 8;18(2):245-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycobiology. 2012 Jun;22(6):839-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22322011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jul;76(14):7306-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Sep 22;477(7365):466-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21849977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2005 May;67(5):1556-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Dev Res. 2013 Mar;74(2):65-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25152555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20125-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22123961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 7;372(1):16-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 2010 May 19;21(5):875-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20369886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Mar;20(3):275-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1986 Sep;59(3):703-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3016332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;808:241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22057530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Feb;70(2):1100-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8551569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 22;277(8):6615-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Apr;86(8):4394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2013 Dec;17(6):997-1005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24466581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Apr 10;399(2):257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20129637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Mar;84(5):1369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2434954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(19):10617-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 27;300(5628):2065-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12829775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2004 Oct;48(10):3858-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15388446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Dev Res. 2014 May;75(3):172-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24648292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13800-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 28;302(5650):1504-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1991 Mar;35(3):410-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1645507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Dec 15;480(7377):336-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22113616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 25;334(6059):1097-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21998254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics Bioinform. 2012 Apr 30;5(4):090-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25284963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Jul;76(14):7293-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12072528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Jun 5;157(6):1460-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24906157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2010 Jun;22(3):358-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20299194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010;6(8):e1001028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20700449</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25774492
   |texte=   Targeting N-glycan cryptic sugar moieties for broad-spectrum virus neutralization: progress in identifying conserved molecular targets in viruses of distinct phylogenetic origins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25774492" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021