Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS.

Identifieur interne : 000E10 ( PubMed/Corpus ); précédent : 000E09; suivant : 000E11

Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS.

Auteurs : Sakshi Tomar ; Melanie L. Johnston ; Sarah E. St John ; Heather L. Osswald ; Prasanth R. Nyalapatla ; Lake N. Paul ; Arun K. Ghosh ; Mark R. Denison ; Andrew D. Mesecar

Source :

RBID : pubmed:26055715

English descriptors

Abstract

All coronaviruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) from the β-CoV subgroup, require the proteolytic activity of the nsp5 protease (also known as 3C-like protease, 3CL(pro)) during virus replication, making it a high value target for the development of anti-coronavirus therapeutics. Kinetic studies indicate that in contrast to 3CL(pro) from other β-CoV 2c members, including HKU4 and HKU5, MERS-CoV 3CL(pro) is less efficient at processing a peptide substrate due to MERS-CoV 3CL(pro) being a weakly associated dimer. Conversely, HKU4, HKU5, and SARS-CoV 3CL(pro) enzymes are tightly associated dimers. Analytical ultracentrifugation studies support that MERS-CoV 3CL(pro) is a weakly associated dimer (Kd ∼52 μm) with a slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CL(pro) were synthesized and utilized in analytical ultracentrifugation experiments and demonstrate that MERS-CoV 3CL(pro) undergoes significant ligand-induced dimerization. Kinetic studies also revealed that designed reversible inhibitors act as activators at a low compound concentration as a result of induced dimerization. Primary sequence comparisons and x-ray structural analyses of two MERS-CoV 3CLpro and inhibitor complexes, determined to 1.6 Å, reveal remarkable structural similarity of the dimer interface with 3CL(pro) from HKU4-CoV and HKU5-CoV. Despite this structural similarity, substantial differences in the dimerization ability suggest that long range interactions by the nonconserved amino acids distant from the dimer interface may control MERS-CoV 3CL(pro) dimerization. Activation of MERS-CoV 3CL(pro) through ligand-induced dimerization appears to be unique within the genogroup 2c and may potentially increase the complexity in the development of MERS-CoV 3CL(pro) inhibitors as antiviral agents.

DOI: 10.1074/jbc.M115.651463
PubMed: 26055715

Links to Exploration step

pubmed:26055715

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS.</title>
<author>
<name sortKey="Tomar, Sakshi" sort="Tomar, Sakshi" uniqKey="Tomar S" first="Sakshi" last="Tomar">Sakshi Tomar</name>
<affiliation>
<nlm:affiliation>From the Departments of Biological Sciences and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnston, Melanie L" sort="Johnston, Melanie L" uniqKey="Johnston M" first="Melanie L" last="Johnston">Melanie L. Johnston</name>
<affiliation>
<nlm:affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="St John, Sarah E" sort="St John, Sarah E" uniqKey="St John S" first="Sarah E" last="St John">Sarah E. St John</name>
<affiliation>
<nlm:affiliation>From the Departments of Biological Sciences and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Osswald, Heather L" sort="Osswald, Heather L" uniqKey="Osswald H" first="Heather L" last="Osswald">Heather L. Osswald</name>
<affiliation>
<nlm:affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nyalapatla, Prasanth R" sort="Nyalapatla, Prasanth R" uniqKey="Nyalapatla P" first="Prasanth R" last="Nyalapatla">Prasanth R. Nyalapatla</name>
<affiliation>
<nlm:affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paul, Lake N" sort="Paul, Lake N" uniqKey="Paul L" first="Lake N" last="Paul">Lake N. Paul</name>
<affiliation>
<nlm:affiliation>the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Arun K" sort="Ghosh, Arun K" uniqKey="Ghosh A" first="Arun K" last="Ghosh">Arun K. Ghosh</name>
<affiliation>
<nlm:affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
<affiliation>
<nlm:affiliation>the Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D" last="Mesecar">Andrew D. Mesecar</name>
<affiliation>
<nlm:affiliation>From the Departments of Biological Sciences and Chemistry, Purdue University, West Lafayette, Indiana 47907, amesecar@purdue.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26055715</idno>
<idno type="pmid">26055715</idno>
<idno type="doi">10.1074/jbc.M115.651463</idno>
<idno type="wicri:Area/PubMed/Corpus">000E10</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E10</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS.</title>
<author>
<name sortKey="Tomar, Sakshi" sort="Tomar, Sakshi" uniqKey="Tomar S" first="Sakshi" last="Tomar">Sakshi Tomar</name>
<affiliation>
<nlm:affiliation>From the Departments of Biological Sciences and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnston, Melanie L" sort="Johnston, Melanie L" uniqKey="Johnston M" first="Melanie L" last="Johnston">Melanie L. Johnston</name>
<affiliation>
<nlm:affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="St John, Sarah E" sort="St John, Sarah E" uniqKey="St John S" first="Sarah E" last="St John">Sarah E. St John</name>
<affiliation>
<nlm:affiliation>From the Departments of Biological Sciences and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Osswald, Heather L" sort="Osswald, Heather L" uniqKey="Osswald H" first="Heather L" last="Osswald">Heather L. Osswald</name>
<affiliation>
<nlm:affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nyalapatla, Prasanth R" sort="Nyalapatla, Prasanth R" uniqKey="Nyalapatla P" first="Prasanth R" last="Nyalapatla">Prasanth R. Nyalapatla</name>
<affiliation>
<nlm:affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Paul, Lake N" sort="Paul, Lake N" uniqKey="Paul L" first="Lake N" last="Paul">Lake N. Paul</name>
<affiliation>
<nlm:affiliation>the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, and.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghosh, Arun K" sort="Ghosh, Arun K" uniqKey="Ghosh A" first="Arun K" last="Ghosh">Arun K. Ghosh</name>
<affiliation>
<nlm:affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Denison, Mark R" sort="Denison, Mark R" uniqKey="Denison M" first="Mark R" last="Denison">Mark R. Denison</name>
<affiliation>
<nlm:affiliation>the Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mesecar, Andrew D" sort="Mesecar, Andrew D" uniqKey="Mesecar A" first="Andrew D" last="Mesecar">Andrew D. Mesecar</name>
<affiliation>
<nlm:affiliation>From the Departments of Biological Sciences and Chemistry, Purdue University, West Lafayette, Indiana 47907, amesecar@purdue.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Antiviral Agents (chemical synthesis)</term>
<term>Antiviral Agents (chemistry)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Crystallography, X-Ray</term>
<term>Cysteine Endopeptidases (chemistry)</term>
<term>Cysteine Endopeptidases (genetics)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Gene Expression</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Kinetics</term>
<term>Ligands</term>
<term>Middle East Respiratory Syndrome Coronavirus (drug effects)</term>
<term>Middle East Respiratory Syndrome Coronavirus (enzymology)</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Molecular Docking Simulation</term>
<term>Molecular Sequence Data</term>
<term>Peptidomimetics (chemical synthesis)</term>
<term>Peptidomimetics (chemistry)</term>
<term>Peptidomimetics (pharmacology)</term>
<term>Protein Multimerization (drug effects)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Alignment</term>
<term>Substrate Specificity</term>
<term>Viral Proteins (antagonists & inhibitors)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (genetics)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Antiviral Agents</term>
<term>Peptidomimetics</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Antiviral Agents</term>
<term>Cysteine Endopeptidases</term>
<term>Peptidomimetics</term>
<term>Recombinant Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Recombinant Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Recombinant Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Peptidomimetics</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
<term>Protein Multimerization</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Gene Expression</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Kinetics</term>
<term>Ligands</term>
<term>Molecular Docking Simulation</term>
<term>Molecular Sequence Data</term>
<term>Sequence Alignment</term>
<term>Substrate Specificity</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">All coronaviruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) from the β-CoV subgroup, require the proteolytic activity of the nsp5 protease (also known as 3C-like protease, 3CL(pro)) during virus replication, making it a high value target for the development of anti-coronavirus therapeutics. Kinetic studies indicate that in contrast to 3CL(pro) from other β-CoV 2c members, including HKU4 and HKU5, MERS-CoV 3CL(pro) is less efficient at processing a peptide substrate due to MERS-CoV 3CL(pro) being a weakly associated dimer. Conversely, HKU4, HKU5, and SARS-CoV 3CL(pro) enzymes are tightly associated dimers. Analytical ultracentrifugation studies support that MERS-CoV 3CL(pro) is a weakly associated dimer (Kd ∼52 μm) with a slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CL(pro) were synthesized and utilized in analytical ultracentrifugation experiments and demonstrate that MERS-CoV 3CL(pro) undergoes significant ligand-induced dimerization. Kinetic studies also revealed that designed reversible inhibitors act as activators at a low compound concentration as a result of induced dimerization. Primary sequence comparisons and x-ray structural analyses of two MERS-CoV 3CLpro and inhibitor complexes, determined to 1.6 Å, reveal remarkable structural similarity of the dimer interface with 3CL(pro) from HKU4-CoV and HKU5-CoV. Despite this structural similarity, substantial differences in the dimerization ability suggest that long range interactions by the nonconserved amino acids distant from the dimer interface may control MERS-CoV 3CL(pro) dimerization. Activation of MERS-CoV 3CL(pro) through ligand-induced dimerization appears to be unique within the genogroup 2c and may potentially increase the complexity in the development of MERS-CoV 3CL(pro) inhibitors as antiviral agents. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26055715</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>290</Volume>
<Issue>32</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS.</ArticleTitle>
<Pagination>
<MedlinePgn>19403-22</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M115.651463</ELocationID>
<Abstract>
<AbstractText>All coronaviruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) from the β-CoV subgroup, require the proteolytic activity of the nsp5 protease (also known as 3C-like protease, 3CL(pro)) during virus replication, making it a high value target for the development of anti-coronavirus therapeutics. Kinetic studies indicate that in contrast to 3CL(pro) from other β-CoV 2c members, including HKU4 and HKU5, MERS-CoV 3CL(pro) is less efficient at processing a peptide substrate due to MERS-CoV 3CL(pro) being a weakly associated dimer. Conversely, HKU4, HKU5, and SARS-CoV 3CL(pro) enzymes are tightly associated dimers. Analytical ultracentrifugation studies support that MERS-CoV 3CL(pro) is a weakly associated dimer (Kd ∼52 μm) with a slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CL(pro) were synthesized and utilized in analytical ultracentrifugation experiments and demonstrate that MERS-CoV 3CL(pro) undergoes significant ligand-induced dimerization. Kinetic studies also revealed that designed reversible inhibitors act as activators at a low compound concentration as a result of induced dimerization. Primary sequence comparisons and x-ray structural analyses of two MERS-CoV 3CLpro and inhibitor complexes, determined to 1.6 Å, reveal remarkable structural similarity of the dimer interface with 3CL(pro) from HKU4-CoV and HKU5-CoV. Despite this structural similarity, substantial differences in the dimerization ability suggest that long range interactions by the nonconserved amino acids distant from the dimer interface may control MERS-CoV 3CL(pro) dimerization. Activation of MERS-CoV 3CL(pro) through ligand-induced dimerization appears to be unique within the genogroup 2c and may potentially increase the complexity in the development of MERS-CoV 3CL(pro) inhibitors as antiviral agents. </AbstractText>
<CopyrightInformation>© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tomar</LastName>
<ForeName>Sakshi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>From the Departments of Biological Sciences and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnston</LastName>
<ForeName>Melanie L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>St John</LastName>
<ForeName>Sarah E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>From the Departments of Biological Sciences and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Osswald</LastName>
<ForeName>Heather L</ForeName>
<Initials>HL</Initials>
<AffiliationInfo>
<Affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nyalapatla</LastName>
<ForeName>Prasanth R</ForeName>
<Initials>PR</Initials>
<AffiliationInfo>
<Affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Paul</LastName>
<ForeName>Lake N</ForeName>
<Initials>LN</Initials>
<AffiliationInfo>
<Affiliation>the Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghosh</LastName>
<ForeName>Arun K</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Chemistry, Purdue University, West Lafayette, Indiana 47907.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Denison</LastName>
<ForeName>Mark R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>the Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mesecar</LastName>
<ForeName>Andrew D</ForeName>
<Initials>AD</Initials>
<AffiliationInfo>
<Affiliation>From the Departments of Biological Sciences and Chemistry, Purdue University, West Lafayette, Indiana 47907, amesecar@purdue.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2ALV</AccessionNumber>
<AccessionNumber>2YNB</AccessionNumber>
<AccessionNumber>3V3M</AccessionNumber>
<AccessionNumber>4MDS</AccessionNumber>
<AccessionNumber>4RSP</AccessionNumber>
<AccessionNumber>4YLU</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI026603</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI08508</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI026603</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA023168</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R37 GM053386</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008024">Ligands</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D057786">Peptidomimetics</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="C099456">3C-like proteinase, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008024" MajorTopicYN="N">Ligands</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065207" MajorTopicYN="N">Middle East Respiratory Syndrome Coronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062105" MajorTopicYN="N">Molecular Docking Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057786" MajorTopicYN="N">Peptidomimetics</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MERS-CoV 3CLpro</Keyword>
<Keyword MajorTopicYN="N">X-ray crystallography</Keyword>
<Keyword MajorTopicYN="N">analytical ultracentrifugation</Keyword>
<Keyword MajorTopicYN="N">enzyme inactivation</Keyword>
<Keyword MajorTopicYN="N">enzyme inhibitor</Keyword>
<Keyword MajorTopicYN="N">enzyme kinetics</Keyword>
<Keyword MajorTopicYN="N">ligand-induced dimerization</Keyword>
<Keyword MajorTopicYN="N">monomer-dimer equilibrium</Keyword>
<Keyword MajorTopicYN="N">viral protease</Keyword>
<Keyword MajorTopicYN="N">β-CoV</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26055715</ArticleId>
<ArticleId IdType="pii">M115.651463</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M115.651463</ArticleId>
<ArticleId IdType="pmc">PMC4528106</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Protein Cell. 2010 Jan;1(1):59-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21203998</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Jul 18;9(7):e101941</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25036652</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2014 Mar 25;5(2):e00047-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24667706</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2006 Jun 23;22(6):807-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16793549</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):31257-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15788388</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 1988 Nov 25;16(22):10881-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2849754</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet Infect Dis. 2013 Oct;13(10):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933067</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect. 2012 Dec;65(6):477-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23072791</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2013 Dec 14;382(9909):1993-2002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24055451</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561748</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Protoc Immunol. 2008 May;Chapter 18:Unit 18.15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18491296</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2004 Oct;11(10):1445-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489171</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Lancet. 2013 Aug 24;382(9893):694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831141</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2005 Nov 3;48(22):6832-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16250642</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2014 Mar 27;57(6):2393-412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24568342</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2010 Sep 3;285(36):28134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20489209</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Pharm Des. 2006;12(35):4555-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17168761</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2013 May;69(Pt 5):747-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23633583</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2013 Jan 24;56(2):534-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231439</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2004 Jun 4;279(23):24765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15037623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 May;86(9):4801-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22345451</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2001 Nov 6;40(44):13230-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11683631</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 May;82(9):4620-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2013 Nov;19(11):1819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24206838</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2012 Dec 13;492(7428):166-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23235854</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Biochem. 2008 Apr;143(4):525-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182387</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2006 Dec 19;45(50):14908-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17154528</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1967 Dec;58(6):2268-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4298953</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2013 Mar;19(3):456-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622767</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2012 Nov 20;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Adv Virol. 2011;2011:129134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22315599</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Med Chem. 2005 Nov 3;48(22):6767-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16250632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem Lett. 2013 Nov 15;23(22):6172-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24080461</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Vet Scand. 1991;32(2):163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1666489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2013 Aug 1;369(5):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782161</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613317</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem Lett. 2008 Oct 15;18(20):5684-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18796354</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1995 Jun;69(6):3554-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7745703</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2013 Jun 13;18(24):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23787162</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2011 Feb;7(2):e1001084</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21390281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioorg Med Chem Lett. 2007 Nov 1;17(21):5876-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17855091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Soc Exp Biol Med. 1966 Jan;121(1):190-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4285768</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397958</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Pharm Des. 2006;12(35):4573-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17168763</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Biophys J. 2010 Apr 7;98(7):1327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20371333</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Rec. 1985 Nov 2;117(18):459-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3000058</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 1970 Oct;122(4):272-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5504709</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2013 Sep 05;18(36):pii=20574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24079378</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753421</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E10 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E10 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26055715
   |texte=   Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26055715" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021