Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway.

Identifieur interne : 000E05 ( PubMed/Corpus ); précédent : 000E04; suivant : 000E06

A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway.

Auteurs : Jason W. Westerbeck ; Carolyn E. Machamer

Source :

RBID : pubmed:26136577

English descriptors

Abstract

Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi complex membranes, and has cation channel activity in vitro. However, the precise functions of the CoV E protein during infection are still enigmatic. Structural data for the severe acute respiratory syndrome (SARS)-CoV E protein suggest that it assembles into a homopentamer. Specific residues in the HD regulate the ion-conducting pore formed by SARS-CoV E in artificial bilayers and the pathogenicity of the virus during infection. The E protein from the avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system which require residues in the HD. Here, we use the known structural data from SARS-CoV E to infer the residues important for ion channel activity and the oligomerization of IBV E. We present biochemical data for the formation of two distinct oligomeric pools of IBV E in transfected and infected cells and the residues required for their formation. A high-order oligomer of IBV E is required for the production of virus-like particles (VLPs), implicating this form of the protein in virion assembly. Additionally, disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity.

DOI: 10.1128/JVI.01237-15
PubMed: 26136577

Links to Exploration step

pubmed:26136577

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway.</title>
<author>
<name sortKey="Westerbeck, Jason W" sort="Westerbeck, Jason W" uniqKey="Westerbeck J" first="Jason W" last="Westerbeck">Jason W. Westerbeck</name>
<affiliation>
<nlm:affiliation>Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Machamer, Carolyn E" sort="Machamer, Carolyn E" uniqKey="Machamer C" first="Carolyn E" last="Machamer">Carolyn E. Machamer</name>
<affiliation>
<nlm:affiliation>Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA machamer@jhmi.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26136577</idno>
<idno type="pmid">26136577</idno>
<idno type="doi">10.1128/JVI.01237-15</idno>
<idno type="wicri:Area/PubMed/Corpus">000E05</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway.</title>
<author>
<name sortKey="Westerbeck, Jason W" sort="Westerbeck, Jason W" uniqKey="Westerbeck J" first="Jason W" last="Westerbeck">Jason W. Westerbeck</name>
<affiliation>
<nlm:affiliation>Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Machamer, Carolyn E" sort="Machamer, Carolyn E" uniqKey="Machamer C" first="Carolyn E" last="Machamer">Carolyn E. Machamer</name>
<affiliation>
<nlm:affiliation>Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA machamer@jhmi.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Protein Multimerization (physiology)</term>
<term>Protein Structure, Quaternary</term>
<term>SARS Virus (physiology)</term>
<term>Severe Acute Respiratory Syndrome (genetics)</term>
<term>Severe Acute Respiratory Syndrome (metabolism)</term>
<term>Vero Cells</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (genetics)</term>
<term>Viral Envelope Proteins (metabolism)</term>
<term>Virus Assembly (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Severe Acute Respiratory Syndrome</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Protein Multimerization</term>
<term>SARS Virus</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Mice</term>
<term>Protein Structure, Quaternary</term>
<term>Vero Cells</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi complex membranes, and has cation channel activity in vitro. However, the precise functions of the CoV E protein during infection are still enigmatic. Structural data for the severe acute respiratory syndrome (SARS)-CoV E protein suggest that it assembles into a homopentamer. Specific residues in the HD regulate the ion-conducting pore formed by SARS-CoV E in artificial bilayers and the pathogenicity of the virus during infection. The E protein from the avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system which require residues in the HD. Here, we use the known structural data from SARS-CoV E to infer the residues important for ion channel activity and the oligomerization of IBV E. We present biochemical data for the formation of two distinct oligomeric pools of IBV E in transfected and infected cells and the residues required for their formation. A high-order oligomer of IBV E is required for the production of virus-like particles (VLPs), implicating this form of the protein in virion assembly. Additionally, disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26136577</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>89</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>9313-23</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01237-15</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Coronaviruses (CoVs) assemble by budding into the lumen of the early Golgi complex prior to exocytosis. The small CoV envelope (E) protein plays roles in assembly, virion release, and pathogenesis. CoV E has a single hydrophobic domain (HD), is targeted to Golgi complex membranes, and has cation channel activity in vitro. However, the precise functions of the CoV E protein during infection are still enigmatic. Structural data for the severe acute respiratory syndrome (SARS)-CoV E protein suggest that it assembles into a homopentamer. Specific residues in the HD regulate the ion-conducting pore formed by SARS-CoV E in artificial bilayers and the pathogenicity of the virus during infection. The E protein from the avian infectious bronchitis virus (IBV) has dramatic effects on the secretory system which require residues in the HD. Here, we use the known structural data from SARS-CoV E to infer the residues important for ion channel activity and the oligomerization of IBV E. We present biochemical data for the formation of two distinct oligomeric pools of IBV E in transfected and infected cells and the residues required for their formation. A high-order oligomer of IBV E is required for the production of virus-like particles (VLPs), implicating this form of the protein in virion assembly. Additionally, disruption of the secretory pathway by IBV E correlates with a form that is likely monomeric, suggesting that the effects on the secretory pathway are independent of E ion channel activity.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">CoVs are important human pathogens with significant zoonotic potential, as demonstrated by the emergence of SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. Progress has been made toward identifying potential vaccine candidates in mouse models of CoV infection, including the use of attenuated viruses that lack the CoV E protein or express E-protein mutants. However, no approved vaccines or antiviral therapeutics exist. We previously reported that the hydrophobic domain of the IBV E protein, a putative viroporin, causes disruption of the mammalian secretory pathway when exogenously expressed in cells. Understanding the mechanism of this disruption could lead to the identification of novel antiviral therapeutics. Here, we present biochemical evidence for two distinct oligomeric forms of IBV E, one essential for assembly and the other with a role in disruption of the secretory pathway. Discovery of two forms of CoV E protein will provide additional targets for antiviral therapeutics.</AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Westerbeck</LastName>
<ForeName>Jason W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Machamer</LastName>
<ForeName>Carolyn E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA machamer@jhmi.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM042522</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007445</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM42522</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501689">E protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045169" MajorTopicYN="N">Severe Acute Respiratory Syndrome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="N">Virus Assembly</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26136577</ArticleId>
<ArticleId IdType="pii">JVI.01237-15</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01237-15</ArticleId>
<ArticleId IdType="pmc">PMC4542375</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virology. 2015 Apr;478:75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25726972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(5):e1002674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22570613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2012 Sep;85(1):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22819936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Sep;1828(9):2026-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23688394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Oct;100(1):286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24012996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24599590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 May;10(5):e1004077</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24788150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Aug;10(8):e1004320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25122212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Mar;89(6):3247-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25568205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3870-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Aug;10(8):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22751485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Apr 2;201:61-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25733052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2015 Aug;145(4):476-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25762305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Jul 5;376(2):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Sep 15;95(6):L39-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18658207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):4319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Apr;77(8):4597-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2003 Jul 20;312(1):25-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12890618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1975 Mar 25;415(1):29-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1091302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1986 May;5(5):931-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3013626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1987 Nov;105(5):1957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2824524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1991 Dec;185(2):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1962461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Jun;188(2):666-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1316677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1993 Sep;122(6):1185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8397214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1994 Aug 1;202(2):1018-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8030202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Dec 5;330(1):322-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2005 Feb;88(2):1283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3595-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(21):13209-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2006 Aug 1;91(3):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Sep 30;353(2):294-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2006;581:193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17037529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jan;81(2):813-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17079315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(7):3597-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17229680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Aug;81(16):8374-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17537845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2007 Sep;16(9):2065-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Nov 25;368(2):296-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17692883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Cell Biol. 2001 May;Chapter 5:Unit 5.3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18228371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jul;3(7):e103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17658949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Jul;5(7):e1000511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19593379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Nov;83(22):11682-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Mar 30;399(1):120-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2010 Oct;31(5):407-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20858517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Nov 15;21(22):3838-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Feb;1808(2):522-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21047962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2010;7:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21176220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2011 Feb;21(1):68-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21247754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Oct 25;432(2):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22832120</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000E05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26136577
   |texte=   A Coronavirus E Protein Is Present in Two Distinct Pools with Different Effects on Assembly and the Secretory Pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26136577" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021