Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Detecting respiratory viral RNA using expanded genetic alphabets and self-avoiding DNA.

Identifieur interne : 000D80 ( PubMed/Corpus ); précédent : 000D79; suivant : 000D81

Detecting respiratory viral RNA using expanded genetic alphabets and self-avoiding DNA.

Auteurs : Lyudmyla G. Glushakova ; Nidhi Sharma ; Shuichi Hoshika ; Andrea C. Bradley ; Kevin M. Bradley ; Zunyi Yang ; Steven A. Benner

Source :

RBID : pubmed:26299645

English descriptors

Abstract

Nucleic acid (NA)-targeted tests detect and quantify viral DNA and RNA (collectively xNA) to support epidemiological surveillance and, in individual patients, to guide therapy. They commonly use polymerase chain reaction (PCR) and reverse transcription PCR. Although these all have rapid turnaround, they are expensive to run. Multiplexing would allow their cost to be spread over multiple targets, but often only with lower sensitivity and accuracy, noise, false positives, and false negatives; these arise by interactions between the multiple nucleic acid primers and probes in a multiplexed kit. Here we offer a multiplexed assay for a panel of respiratory viruses that mitigates these problems by combining several nucleic acid analogs from the emerging field of synthetic biology: (i) self-avoiding molecular recognition systems (SAMRSs), which facilitate multiplexing, and (ii) artificially expanded genetic information systems (AEGISs), which enable low-noise PCR. These are supplemented by "transliteration" technology, which converts standard nucleotides in a target to AEGIS nucleotides in a product, improving hybridization. The combination supports a multiplexed Luminex-based respiratory panel that potentially differentiates influenza viruses A and B, respiratory syncytial virus, severe acute respiratory syndrome coronavirus (SARS), and Middle East respiratory syndrome (MERS) coronavirus, detecting as few as 10 MERS virions in a 20-μl sample.

DOI: 10.1016/j.ab.2015.08.015
PubMed: 26299645

Links to Exploration step

pubmed:26299645

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Detecting respiratory viral RNA using expanded genetic alphabets and self-avoiding DNA.</title>
<author>
<name sortKey="Glushakova, Lyudmyla G" sort="Glushakova, Lyudmyla G" uniqKey="Glushakova L" first="Lyudmyla G" last="Glushakova">Lyudmyla G. Glushakova</name>
<affiliation>
<nlm:affiliation>Firebird Biomolecular Sciences, Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Nidhi" sort="Sharma, Nidhi" uniqKey="Sharma N" first="Nidhi" last="Sharma">Nidhi Sharma</name>
<affiliation>
<nlm:affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoshika, Shuichi" sort="Hoshika, Shuichi" uniqKey="Hoshika S" first="Shuichi" last="Hoshika">Shuichi Hoshika</name>
<affiliation>
<nlm:affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bradley, Andrea C" sort="Bradley, Andrea C" uniqKey="Bradley A" first="Andrea C" last="Bradley">Andrea C. Bradley</name>
<affiliation>
<nlm:affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bradley, Kevin M" sort="Bradley, Kevin M" uniqKey="Bradley K" first="Kevin M" last="Bradley">Kevin M. Bradley</name>
<affiliation>
<nlm:affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zunyi" sort="Yang, Zunyi" uniqKey="Yang Z" first="Zunyi" last="Yang">Zunyi Yang</name>
<affiliation>
<nlm:affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Benner, Steven A" sort="Benner, Steven A" uniqKey="Benner S" first="Steven A" last="Benner">Steven A. Benner</name>
<affiliation>
<nlm:affiliation>Firebird Biomolecular Sciences, Alachua, FL 32615, USA; Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA. Electronic address: sbenner@ffame.org.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26299645</idno>
<idno type="pmid">26299645</idno>
<idno type="doi">10.1016/j.ab.2015.08.015</idno>
<idno type="wicri:Area/PubMed/Corpus">000D80</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D80</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Detecting respiratory viral RNA using expanded genetic alphabets and self-avoiding DNA.</title>
<author>
<name sortKey="Glushakova, Lyudmyla G" sort="Glushakova, Lyudmyla G" uniqKey="Glushakova L" first="Lyudmyla G" last="Glushakova">Lyudmyla G. Glushakova</name>
<affiliation>
<nlm:affiliation>Firebird Biomolecular Sciences, Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Nidhi" sort="Sharma, Nidhi" uniqKey="Sharma N" first="Nidhi" last="Sharma">Nidhi Sharma</name>
<affiliation>
<nlm:affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoshika, Shuichi" sort="Hoshika, Shuichi" uniqKey="Hoshika S" first="Shuichi" last="Hoshika">Shuichi Hoshika</name>
<affiliation>
<nlm:affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bradley, Andrea C" sort="Bradley, Andrea C" uniqKey="Bradley A" first="Andrea C" last="Bradley">Andrea C. Bradley</name>
<affiliation>
<nlm:affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bradley, Kevin M" sort="Bradley, Kevin M" uniqKey="Bradley K" first="Kevin M" last="Bradley">Kevin M. Bradley</name>
<affiliation>
<nlm:affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zunyi" sort="Yang, Zunyi" uniqKey="Yang Z" first="Zunyi" last="Yang">Zunyi Yang</name>
<affiliation>
<nlm:affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Benner, Steven A" sort="Benner, Steven A" uniqKey="Benner S" first="Steven A" last="Benner">Steven A. Benner</name>
<affiliation>
<nlm:affiliation>Firebird Biomolecular Sciences, Alachua, FL 32615, USA; Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA. Electronic address: sbenner@ffame.org.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Analytical biochemistry</title>
<idno type="eISSN">1096-0309</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coronaviridae (classification)</term>
<term>Coronaviridae (isolation & purification)</term>
<term>Coronaviridae (metabolism)</term>
<term>DNA (metabolism)</term>
<term>DNA, Single-Stranded (metabolism)</term>
<term>DNA-Directed RNA Polymerases (metabolism)</term>
<term>Deoxyribonucleosides (metabolism)</term>
<term>Fluorescent Dyes (chemistry)</term>
<term>Hydrogen Bonding</term>
<term>Immobilized Nucleic Acids (metabolism)</term>
<term>Limit of Detection</term>
<term>Microspheres</term>
<term>Molecular Typing (methods)</term>
<term>Multiplex Polymerase Chain Reaction (methods)</term>
<term>Nucleic Acid Heteroduplexes</term>
<term>Nucleic Acid Hybridization (methods)</term>
<term>Orthomyxoviridae (classification)</term>
<term>Orthomyxoviridae (isolation & purification)</term>
<term>Orthomyxoviridae (metabolism)</term>
<term>Phycoerythrin (chemistry)</term>
<term>Pyridones (metabolism)</term>
<term>RNA, Viral (isolation & purification)</term>
<term>RNA, Viral (metabolism)</term>
<term>Respiratory Syncytial Viruses (classification)</term>
<term>Respiratory Syncytial Viruses (isolation & purification)</term>
<term>Respiratory Syncytial Viruses (metabolism)</term>
<term>Respiratory Tract Infections (diagnosis)</term>
<term>Respiratory Tract Infections (virology)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Synthetic Biology (methods)</term>
<term>Triazines (metabolism)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fluorescent Dyes</term>
<term>Phycoerythrin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA</term>
<term>DNA, Single-Stranded</term>
<term>DNA-Directed RNA Polymerases</term>
<term>Deoxyribonucleosides</term>
<term>Immobilized Nucleic Acids</term>
<term>Pyridones</term>
<term>RNA, Viral</term>
<term>Triazines</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Coronaviridae</term>
<term>Orthomyxoviridae</term>
<term>Respiratory Syncytial Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Respiratory Tract Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Coronaviridae</term>
<term>Orthomyxoviridae</term>
<term>Respiratory Syncytial Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Coronaviridae</term>
<term>Orthomyxoviridae</term>
<term>Respiratory Syncytial Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Molecular Typing</term>
<term>Multiplex Polymerase Chain Reaction</term>
<term>Nucleic Acid Hybridization</term>
<term>Synthetic Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Respiratory Tract Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Hydrogen Bonding</term>
<term>Limit of Detection</term>
<term>Microspheres</term>
<term>Nucleic Acid Heteroduplexes</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Nucleic acid (NA)-targeted tests detect and quantify viral DNA and RNA (collectively xNA) to support epidemiological surveillance and, in individual patients, to guide therapy. They commonly use polymerase chain reaction (PCR) and reverse transcription PCR. Although these all have rapid turnaround, they are expensive to run. Multiplexing would allow their cost to be spread over multiple targets, but often only with lower sensitivity and accuracy, noise, false positives, and false negatives; these arise by interactions between the multiple nucleic acid primers and probes in a multiplexed kit. Here we offer a multiplexed assay for a panel of respiratory viruses that mitigates these problems by combining several nucleic acid analogs from the emerging field of synthetic biology: (i) self-avoiding molecular recognition systems (SAMRSs), which facilitate multiplexing, and (ii) artificially expanded genetic information systems (AEGISs), which enable low-noise PCR. These are supplemented by "transliteration" technology, which converts standard nucleotides in a target to AEGIS nucleotides in a product, improving hybridization. The combination supports a multiplexed Luminex-based respiratory panel that potentially differentiates influenza viruses A and B, respiratory syncytial virus, severe acute respiratory syndrome coronavirus (SARS), and Middle East respiratory syndrome (MERS) coronavirus, detecting as few as 10 MERS virions in a 20-μl sample. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26299645</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-0309</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>489</Volume>
<PubDate>
<Year>2015</Year>
<Month>Nov</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Analytical biochemistry</Title>
<ISOAbbreviation>Anal. Biochem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Detecting respiratory viral RNA using expanded genetic alphabets and self-avoiding DNA.</ArticleTitle>
<Pagination>
<MedlinePgn>62-72</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ab.2015.08.015</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0003-2697(15)00391-7</ELocationID>
<Abstract>
<AbstractText>Nucleic acid (NA)-targeted tests detect and quantify viral DNA and RNA (collectively xNA) to support epidemiological surveillance and, in individual patients, to guide therapy. They commonly use polymerase chain reaction (PCR) and reverse transcription PCR. Although these all have rapid turnaround, they are expensive to run. Multiplexing would allow their cost to be spread over multiple targets, but often only with lower sensitivity and accuracy, noise, false positives, and false negatives; these arise by interactions between the multiple nucleic acid primers and probes in a multiplexed kit. Here we offer a multiplexed assay for a panel of respiratory viruses that mitigates these problems by combining several nucleic acid analogs from the emerging field of synthetic biology: (i) self-avoiding molecular recognition systems (SAMRSs), which facilitate multiplexing, and (ii) artificially expanded genetic information systems (AEGISs), which enable low-noise PCR. These are supplemented by "transliteration" technology, which converts standard nucleotides in a target to AEGIS nucleotides in a product, improving hybridization. The combination supports a multiplexed Luminex-based respiratory panel that potentially differentiates influenza viruses A and B, respiratory syncytial virus, severe acute respiratory syndrome coronavirus (SARS), and Middle East respiratory syndrome (MERS) coronavirus, detecting as few as 10 MERS virions in a 20-μl sample. </AbstractText>
<CopyrightInformation>Copyright © 2015 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Glushakova</LastName>
<ForeName>Lyudmyla G</ForeName>
<Initials>LG</Initials>
<AffiliationInfo>
<Affiliation>Firebird Biomolecular Sciences, Alachua, FL 32615, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sharma</LastName>
<ForeName>Nidhi</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoshika</LastName>
<ForeName>Shuichi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bradley</LastName>
<ForeName>Andrea C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bradley</LastName>
<ForeName>Kevin M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Zunyi</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Benner</LastName>
<ForeName>Steven A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Firebird Biomolecular Sciences, Alachua, FL 32615, USA; Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA. Electronic address: sbenner@ffame.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI098616</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D023361">Validation Study</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Anal Biochem</MedlineTA>
<NlmUniqueID>0370535</NlmUniqueID>
<ISSNLinking>0003-2697</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C515831">2-amino-8-(1'-(2'-deoxyribofuranosyl))imidazo(1,2-a)-1,3,5-triazin-4(8H)-one</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C515830">6-amino-5-nitro-3-(1'-(2'-deoxyribofuranosyl))-2(1H)-pyridone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004277">DNA, Single-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003853">Deoxyribonucleosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005456">Fluorescent Dyes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D061925">Immobilized Nucleic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009692">Nucleic Acid Heteroduplexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011728">Pyridones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014227">Triazines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11016-17-4</RegistryNumber>
<NameOfSubstance UI="D010799">Phycoerythrin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="C062210">bacteriophage T7 RNA polymerase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012321">DNA-Directed RNA Polymerases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003332" MajorTopicYN="N">Coronaviridae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004277" MajorTopicYN="N">DNA, Single-Stranded</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012321" MajorTopicYN="N">DNA-Directed RNA Polymerases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003853" MajorTopicYN="N">Deoxyribonucleosides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005456" MajorTopicYN="N">Fluorescent Dyes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006860" MajorTopicYN="N">Hydrogen Bonding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061925" MajorTopicYN="N">Immobilized Nucleic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057230" MajorTopicYN="N">Limit of Detection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008863" MajorTopicYN="N">Microspheres</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058889" MajorTopicYN="N">Molecular Typing</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060885" MajorTopicYN="N">Multiplex Polymerase Chain Reaction</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009692" MajorTopicYN="N">Nucleic Acid Heteroduplexes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009975" MajorTopicYN="N">Orthomyxoviridae</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010799" MajorTopicYN="N">Phycoerythrin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011728" MajorTopicYN="N">Pyridones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012136" MajorTopicYN="N">Respiratory Syncytial Viruses</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012141" MajorTopicYN="N">Respiratory Tract Infections</DescriptorName>
<QualifierName UI="Q000175" MajorTopicYN="N">diagnosis</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058615" MajorTopicYN="N">Synthetic Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014227" MajorTopicYN="N">Triazines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Artificially expanded genetic information system (AEGIS)</Keyword>
<Keyword MajorTopicYN="N">Luminex direct hybridization assay</Keyword>
<Keyword MajorTopicYN="N">Respiratory viruses</Keyword>
<Keyword MajorTopicYN="N">Reverse transcription PCR</Keyword>
<Keyword MajorTopicYN="N">Self-avoiding molecular recognition system (SAMRS)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>08</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26299645</ArticleId>
<ArticleId IdType="pii">S0003-2697(15)00391-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.ab.2015.08.015</ArticleId>
<ArticleId IdType="pmc">PMC4733849</ArticleId>
<ArticleId IdType="mid">NIHMS725067</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Clin Lab Med. 2009 Dec;29(4):661-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19892227</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2010 Jun 25;5(6):e11317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20592764</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 2015 Mar;214:60-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25680538</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2010;49(1):177-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19946925</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Chem. 2004 Nov;50(11):2019-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319316</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2004 Jul;42(7):3120-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15243070</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2007 Sep;45(9):2779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596361</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Virol. 2011 Jul;51(3):179-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21571585</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2009 Mar;47(3):527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129410</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Euro Surveill. 2012 Oct 04;17(40):20290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078800</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol Methods. 2012 Dec;186(1-2):189-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2011 Apr;49(4):1653-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21270233</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Lab Sci. 2010 Fall;23(4):231-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21140798</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2007 Jul;45(7):2260-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507513</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Eur Respir J. 2007 Dec;30(6):1158-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715167</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Sci China Life Sci. 2013 Aug;56(8):683-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23917839</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Geriatr Soc. 2003 Jun;51(6):761-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12757561</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Anal Chem. 2013 May 7;85(9):4705-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23541235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Microbiol. 2004 Feb;42(2):563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14766817</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Microbiol Rev. 2000 Oct;13(4):559-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11023957</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Chim Acta. 2006 Jan;363(1-2):71-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Infect Dis. 2006 Apr;19(2):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16514342</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2014 May;58(9):1241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24567249</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Crit Rev Clin Lab Sci. 2011 Sep-Dec;48(5-6):217-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22185616</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Infect Dis. 2011 May;52 Suppl 4:S312-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460290</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Clin Microbiol Rev. 2007 Jan;20(1):49-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17223623</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>S Afr Med J. 2009 Oct;99(10):750-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20128275</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>JAMA. 2003 Jan 8;289(2):179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517228</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D80 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000D80 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26299645
   |texte=   Detecting respiratory viral RNA using expanded genetic alphabets and self-avoiding DNA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26299645" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021