Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine.

Identifieur interne : 000D47 ( PubMed/Corpus ); précédent : 000D46; suivant : 000D48

Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine.

Auteurs : Jose M. Jimenez-Guarde O ; Jose A. Regla-Nava ; Jose L. Nieto-Torres ; Marta L. Dediego ; Carlos Casta O-Rodriguez ; Raul Fernandez-Delgado ; Stanley Perlman ; Luis Enjuanes

Source :

RBID : pubmed:26513244

English descriptors

Abstract

A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV.

DOI: 10.1371/journal.ppat.1005215
PubMed: 26513244

Links to Exploration step

pubmed:26513244

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine.</title>
<author>
<name sortKey="Jimenez Guarde O, Jose M" sort="Jimenez Guarde O, Jose M" uniqKey="Jimenez Guarde O J" first="Jose M" last="Jimenez-Guarde O">Jose M. Jimenez-Guarde O</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Regla Nava, Jose A" sort="Regla Nava, Jose A" uniqKey="Regla Nava J" first="Jose A" last="Regla-Nava">Jose A. Regla-Nava</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nieto Torres, Jose L" sort="Nieto Torres, Jose L" uniqKey="Nieto Torres J" first="Jose L" last="Nieto-Torres">Jose L. Nieto-Torres</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dediego, Marta L" sort="Dediego, Marta L" uniqKey="Dediego M" first="Marta L" last="Dediego">Marta L. Dediego</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casta O Rodriguez, Carlos" sort="Casta O Rodriguez, Carlos" uniqKey="Casta O Rodriguez C" first="Carlos" last="Casta O-Rodriguez">Carlos Casta O-Rodriguez</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernandez Delgado, Raul" sort="Fernandez Delgado, Raul" uniqKey="Fernandez Delgado R" first="Raul" last="Fernandez-Delgado">Raul Fernandez-Delgado</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perlman, Stanley" sort="Perlman, Stanley" uniqKey="Perlman S" first="Stanley" last="Perlman">Stanley Perlman</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Enjuanes, Luis" sort="Enjuanes, Luis" uniqKey="Enjuanes L" first="Luis" last="Enjuanes">Luis Enjuanes</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26513244</idno>
<idno type="pmid">26513244</idno>
<idno type="doi">10.1371/journal.ppat.1005215</idno>
<idno type="wicri:Area/PubMed/Corpus">000D47</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000D47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine.</title>
<author>
<name sortKey="Jimenez Guarde O, Jose M" sort="Jimenez Guarde O, Jose M" uniqKey="Jimenez Guarde O J" first="Jose M" last="Jimenez-Guarde O">Jose M. Jimenez-Guarde O</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Regla Nava, Jose A" sort="Regla Nava, Jose A" uniqKey="Regla Nava J" first="Jose A" last="Regla-Nava">Jose A. Regla-Nava</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nieto Torres, Jose L" sort="Nieto Torres, Jose L" uniqKey="Nieto Torres J" first="Jose L" last="Nieto-Torres">Jose L. Nieto-Torres</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dediego, Marta L" sort="Dediego, Marta L" uniqKey="Dediego M" first="Marta L" last="Dediego">Marta L. Dediego</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Casta O Rodriguez, Carlos" sort="Casta O Rodriguez, Carlos" uniqKey="Casta O Rodriguez C" first="Carlos" last="Casta O-Rodriguez">Carlos Casta O-Rodriguez</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fernandez Delgado, Raul" sort="Fernandez Delgado, Raul" uniqKey="Fernandez Delgado R" first="Raul" last="Fernandez-Delgado">Raul Fernandez-Delgado</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Perlman, Stanley" sort="Perlman, Stanley" uniqKey="Perlman S" first="Stanley" last="Perlman">Stanley Perlman</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Enjuanes, Luis" sort="Enjuanes, Luis" uniqKey="Enjuanes L" first="Luis" last="Enjuanes">Luis Enjuanes</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Female</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>SARS Virus (growth & development)</term>
<term>SARS Virus (immunology)</term>
<term>SARS Virus (pathogenicity)</term>
<term>Vaccines, Attenuated (immunology)</term>
<term>Vaccines, Synthetic (immunology)</term>
<term>Viral Vaccines (immunology)</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Vaccines, Attenuated</term>
<term>Vaccines, Synthetic</term>
<term>Viral Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Female</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Virulence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26513244</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog.</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine.</ArticleTitle>
<Pagination>
<MedlinePgn>e1005215</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1005215</ELocationID>
<Abstract>
<AbstractText>A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jimenez-Guardeño</LastName>
<ForeName>Jose M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Regla-Nava</LastName>
<ForeName>Jose A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nieto-Torres</LastName>
<ForeName>Jose L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>DeDiego</LastName>
<ForeName>Marta L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Castaño-Rodriguez</LastName>
<ForeName>Carlos</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernandez-Delgado</LastName>
<ForeName>Raul</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perlman</LastName>
<ForeName>Stanley</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Enjuanes</LastName>
<ForeName>Luis</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 AI060699</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5P01AI060699</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014613">Vaccines, Attenuated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014614">Vaccines, Synthetic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014765">Viral Vaccines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014613" MajorTopicYN="N">Vaccines, Attenuated</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014614" MajorTopicYN="N">Vaccines, Synthetic</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014765" MajorTopicYN="N">Viral Vaccines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26513244</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1005215</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-15-01312</ArticleId>
<ArticleId IdType="pmc">PMC4626112</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 1999 Sep;73(9):7607-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10438851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Vet Res. 2001 Jan;65(1):28-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11227191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 22;277(8):5699-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Apr;77(8):4597-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2003 May 16;21(17-18):1833-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12706667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2003 Apr 19;361(9366):1319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12711465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Aug 29;331(5):991-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1992 Jul;189(1):88-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1318616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1992 Oct;66(10):6117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1326662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jan;78(2):980-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14694129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1666-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14752165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2004 Mar;10(3):424-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14970388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Apr;78(7):3572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6641-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9804-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15210961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2005 Jan;11(1):168-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15714661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol (Basel). 2004;119:129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15742624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Apr 29;330(1):286-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Apr;11(4 Suppl):S54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15812491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2005 May;7(5-6):882-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15878679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2005 Dec;51(12):2333-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jul 20;351(1):180-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2006 Aug 1;91(3):938-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(15):7287-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16840309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Nov;80(21):10900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2006 May 23;1(4):207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 May;81(10):5423-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):45-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Aug 10;3(8):e109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17696607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Sep 28;25(39-40):6981-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17709158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(21):11620-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17715225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2007 Sep;13(9):1295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 May;82(9):4471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18305050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 Jul 5;376(2):379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Aug;82(15):7721-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18463152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Sep 30;6(9):e239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18828675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Dec;4(12):e1000240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2009 Apr;390(4):319-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19199833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2009 Apr;55(4):611-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19246619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 May;83(10):5282-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Jun;7(6):439-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2009 Dec;77(4):796-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19585657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Nov;16(11):1134-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19838190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Mar 30;399(1):120-128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Feb 05;6(2):e1000756</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20140198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Apr 08;6(4):e1000849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 May 06;6(5):e1000896</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20463816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Sep;84(18):9318-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20610717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Feb;1808(2):572-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Nov 15;21(22):3838-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20861307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12872-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 Jul 5;415(2):69-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21524776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Nov;85(22):11544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21775458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002433</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2012 Oct;169(1):54-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Jul 19;7(8):1511-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22814390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Oct 25;432(2):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22832120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Oct;86(20):11128-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22855488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2012 Oct 04;17(40):20290</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2012;8(11):e1002749</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23133356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(12):6551-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23576515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 08;8(4):e61166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23593419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Sep;1828(9):2026-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23688394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol Methods. 2013 Nov;193(2):639-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23911968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2013 Oct 1;455(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24028161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jan;88(2):913-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24198408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Dec;11(12):836-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24217413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Mar;95(Pt 3):614-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24362959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 May 01;10(5):e1004077</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24788150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Res. 2014 Aug;59(1-3):118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24845462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Aug 14;10(8):e1004320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25122212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Apr 16;202:89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25432065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Apr;89(7):3870-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Jan 20;227(2):378-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9018137</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000D47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26513244
   |texte=   Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26513244" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021