Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles.

Identifieur interne : 000C60 ( PubMed/Corpus ); précédent : 000C59; suivant : 000C61

The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles.

Auteurs : Makoto Ujike ; Cheng Huang ; Kazuya Shirato ; Shinji Makino ; Fumihiro Taguchi

Source :

RBID : pubmed:27145752

English descriptors

Abstract

The cytoplasmic tails of some coronavirus (CoV) spike (S) proteins contain an endoplasmic reticulum retrieval signal (ERRS) that can retrieve S proteins from the Golgi to the endoplasmic reticulum (ER); this process is thought to accumulate S proteins at the CoV budding site, the ER-Golgi intermediate compartment (ERGIC), and to facilitate S protein incorporation into virions. However, we showed previously that porcine epidemic diarrhoea CoV S proteins lacking the ERRS were efficiently incorporated into virions, similar to the original virus. Thus, the precise role of the ERRS in virus assembly remains unclear. Here, the roles of the S protein ERRS in severe acute respiratory syndrome CoV (SARS-CoV) intracellular trafficking and S incorporation into virus-like particles (VLPs) are described. Intracellular trafficking and indirect immunofluorescence analysis suggested that when M protein was present, wild-type S protein (wtS) could be retained in the pre- and post-medial Golgi compartments intracellularly and co-localized with M protein in the Golgi. In contrast, mutant S protein lacking the ERRS was distributed throughout the ER and only partially co-localized with M protein. Moreover, the intracellular accumulation of mutant S protein, particularly at the post-medial Golgi compartment, was significantly reduced compared with wtS. A VLP assay suggested that wtS that reached the post-medial compartment could be returned to the ERGIC for subsequent incorporation into VLPs, while mutant S protein could not. These results suggest that the ERRS of SARS-CoV contributes to intracellular S protein accumulation specifically in the post-medial Golgi compartment and to S protein incorporation into VLPs.

DOI: 10.1099/jgv.0.000494
PubMed: 27145752

Links to Exploration step

pubmed:27145752

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles.</title>
<author>
<name sortKey="Ujike, Makoto" sort="Ujike, Makoto" uniqKey="Ujike M" first="Makoto" last="Ujike">Makoto Ujike</name>
<affiliation>
<nlm:affiliation>Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Cheng" sort="Huang, Cheng" uniqKey="Huang C" first="Cheng" last="Huang">Cheng Huang</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shirato, Kazuya" sort="Shirato, Kazuya" uniqKey="Shirato K" first="Kazuya" last="Shirato">Kazuya Shirato</name>
<affiliation>
<nlm:affiliation>Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Gakuen 4-7-1 Musashimurayama, Tokyo 208-0011, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
<affiliation>
<nlm:affiliation>Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27145752</idno>
<idno type="pmid">27145752</idno>
<idno type="doi">10.1099/jgv.0.000494</idno>
<idno type="wicri:Area/PubMed/Corpus">000C60</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C60</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles.</title>
<author>
<name sortKey="Ujike, Makoto" sort="Ujike, Makoto" uniqKey="Ujike M" first="Makoto" last="Ujike">Makoto Ujike</name>
<affiliation>
<nlm:affiliation>Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Cheng" sort="Huang, Cheng" uniqKey="Huang C" first="Cheng" last="Huang">Cheng Huang</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shirato, Kazuya" sort="Shirato, Kazuya" uniqKey="Shirato K" first="Kazuya" last="Shirato">Kazuya Shirato</name>
<affiliation>
<nlm:affiliation>Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Gakuen 4-7-1 Musashimurayama, Tokyo 208-0011, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<affiliation>
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taguchi, Fumihiro" sort="Taguchi, Fumihiro" uniqKey="Taguchi F" first="Fumihiro" last="Taguchi">Fumihiro Taguchi</name>
<affiliation>
<nlm:affiliation>Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of general virology</title>
<idno type="eISSN">1465-2099</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Golgi Apparatus (chemistry)</term>
<term>Humans</term>
<term>Mutant Proteins (genetics)</term>
<term>Mutant Proteins (metabolism)</term>
<term>Protein Sorting Signals</term>
<term>Protein Transport</term>
<term>SARS Virus (physiology)</term>
<term>Spike Glycoprotein, Coronavirus (genetics)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Viral Matrix Proteins (metabolism)</term>
<term>Virosomes (metabolism)</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Mutant Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Golgi Apparatus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mutant Proteins</term>
<term>Spike Glycoprotein, Coronavirus</term>
<term>Viral Matrix Proteins</term>
<term>Virosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Protein Sorting Signals</term>
<term>Protein Transport</term>
<term>Virus Assembly</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The cytoplasmic tails of some coronavirus (CoV) spike (S) proteins contain an endoplasmic reticulum retrieval signal (ERRS) that can retrieve S proteins from the Golgi to the endoplasmic reticulum (ER); this process is thought to accumulate S proteins at the CoV budding site, the ER-Golgi intermediate compartment (ERGIC), and to facilitate S protein incorporation into virions. However, we showed previously that porcine epidemic diarrhoea CoV S proteins lacking the ERRS were efficiently incorporated into virions, similar to the original virus. Thus, the precise role of the ERRS in virus assembly remains unclear. Here, the roles of the S protein ERRS in severe acute respiratory syndrome CoV (SARS-CoV) intracellular trafficking and S incorporation into virus-like particles (VLPs) are described. Intracellular trafficking and indirect immunofluorescence analysis suggested that when M protein was present, wild-type S protein (wtS) could be retained in the pre- and post-medial Golgi compartments intracellularly and co-localized with M protein in the Golgi. In contrast, mutant S protein lacking the ERRS was distributed throughout the ER and only partially co-localized with M protein. Moreover, the intracellular accumulation of mutant S protein, particularly at the post-medial Golgi compartment, was significantly reduced compared with wtS. A VLP assay suggested that wtS that reached the post-medial compartment could be returned to the ERGIC for subsequent incorporation into VLPs, while mutant S protein could not. These results suggest that the ERRS of SARS-CoV contributes to intracellular S protein accumulation specifically in the post-medial Golgi compartment and to S protein incorporation into VLPs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27145752</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1465-2099</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>97</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2016</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>The Journal of general virology</Title>
<ISOAbbreviation>J. Gen. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles.</ArticleTitle>
<Pagination>
<MedlinePgn>1853-1864</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1099/jgv.0.000494</ELocationID>
<Abstract>
<AbstractText>The cytoplasmic tails of some coronavirus (CoV) spike (S) proteins contain an endoplasmic reticulum retrieval signal (ERRS) that can retrieve S proteins from the Golgi to the endoplasmic reticulum (ER); this process is thought to accumulate S proteins at the CoV budding site, the ER-Golgi intermediate compartment (ERGIC), and to facilitate S protein incorporation into virions. However, we showed previously that porcine epidemic diarrhoea CoV S proteins lacking the ERRS were efficiently incorporated into virions, similar to the original virus. Thus, the precise role of the ERRS in virus assembly remains unclear. Here, the roles of the S protein ERRS in severe acute respiratory syndrome CoV (SARS-CoV) intracellular trafficking and S incorporation into virus-like particles (VLPs) are described. Intracellular trafficking and indirect immunofluorescence analysis suggested that when M protein was present, wild-type S protein (wtS) could be retained in the pre- and post-medial Golgi compartments intracellularly and co-localized with M protein in the Golgi. In contrast, mutant S protein lacking the ERRS was distributed throughout the ER and only partially co-localized with M protein. Moreover, the intracellular accumulation of mutant S protein, particularly at the post-medial Golgi compartment, was significantly reduced compared with wtS. A VLP assay suggested that wtS that reached the post-medial compartment could be returned to the ERGIC for subsequent incorporation into VLPs, while mutant S protein could not. These results suggest that the ERRS of SARS-CoV contributes to intracellular S protein accumulation specifically in the post-medial Golgi compartment and to S protein incorporation into VLPs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ujike</LastName>
<ForeName>Makoto</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Cheng</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shirato</LastName>
<ForeName>Kazuya</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, Gakuen 4-7-1 Musashimurayama, Tokyo 208-0011, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Makino</LastName>
<ForeName>Shinji</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-1019, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taguchi</LastName>
<ForeName>Fumihiro</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI099107</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI114657</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Gen Virol</MedlineTA>
<NlmUniqueID>0077340</NlmUniqueID>
<ISSNLinking>0022-1317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050505">Mutant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021382">Protein Sorting Signals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014763">Viral Matrix Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D022701">Virosomes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C578557">spike glycoprotein, SARS-CoV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>108502-71-2</RegistryNumber>
<NameOfSubstance UI="C067997">M protein, Coronavirus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006056" MajorTopicYN="N">Golgi Apparatus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050505" MajorTopicYN="N">Mutant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021382" MajorTopicYN="N">Protein Sorting Signals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014763" MajorTopicYN="N">Viral Matrix Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022701" MajorTopicYN="N">Virosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="Y">Virus Assembly</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27145752</ArticleId>
<ArticleId IdType="doi">10.1099/jgv.0.000494</ArticleId>
<ArticleId IdType="pmc">PMC5764123</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 1986 Aug;5(2-3):131-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3765820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Nov;72(11):8636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(22):13848-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16254320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Mar;82(6):2765-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antiviral Res. 2013 Oct;100(1):246-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23994189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43661-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(17):8127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Mar 18;263(5153):1629-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8128252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1967-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1981 Mar;53(Pt 1):93-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6268743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Oct;68(10):6523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 1985 Feb;2(1):53-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3984492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Jpn J Infect Dis. 2005 Apr;58(2):88-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15858286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Nov;79(21):13209-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2015 Apr 03;7(4):1700-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25855243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1979 Jan;42(1):37-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">759559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15150417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Sep;87(18):6944-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2169615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Mar;81(5):2418-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17166901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1995 Oct;131(2):339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7593163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2011 Nov;161(2):188-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21840351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):2020-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Nov;78(22):12557-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15507643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15054-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1982 May;42(2):700-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7086972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 May 18;276(20):17515-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11278557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2004;20:87-123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15473836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Jan;82(1):588-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17942557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Nov;82(22):11318-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18753196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 May;76(10):4987-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):4319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Oct;72(10):7885-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1984 Mar;33(2):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6325194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Apr;86(7):3995-4008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22278237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 15;423(6937):240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2012 Apr;93(Pt 4):823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1701-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16116101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Dec;71(12):9278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9371586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Apr;4(4):557-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22590686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 2006;66:193-292</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Jan;124(1-2):55-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8294506</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C60 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C60 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27145752
   |texte=   The contribution of the cytoplasmic retrieval signal of severe acute respiratory syndrome coronavirus to intracellular accumulation of S proteins and incorporation of S protein into virus-like particles.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27145752" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021