Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.

Identifieur interne : 000C52 ( PubMed/Corpus ); précédent : 000C51; suivant : 000C53

SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.

Auteurs : Shih-Wein Li ; Ching-Ying Wang ; Yu-Jen Jou ; Tsuey-Ching Yang ; Su-Hua Huang ; Lei Wan ; Ying-Ju Lin ; Cheng-Wen Lin

Source :

RBID : pubmed:27173006

English descriptors

Abstract

SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo.

DOI: 10.1038/srep25754
PubMed: 27173006

Links to Exploration step

pubmed:27173006

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.</title>
<author>
<name sortKey="Li, Shih Wein" sort="Li, Shih Wein" uniqKey="Li S" first="Shih-Wein" last="Li">Shih-Wein Li</name>
<affiliation>
<nlm:affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ching Ying" sort="Wang, Ching Ying" uniqKey="Wang C" first="Ching-Ying" last="Wang">Ching-Ying Wang</name>
<affiliation>
<nlm:affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jou, Yu Jen" sort="Jou, Yu Jen" uniqKey="Jou Y" first="Yu-Jen" last="Jou">Yu-Jen Jou</name>
<affiliation>
<nlm:affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Tsuey Ching" sort="Yang, Tsuey Ching" uniqKey="Yang T" first="Tsuey-Ching" last="Yang">Tsuey-Ching Yang</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Su Hua" sort="Huang, Su Hua" uniqKey="Huang S" first="Su-Hua" last="Huang">Su-Hua Huang</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wan, Lei" sort="Wan, Lei" uniqKey="Wan L" first="Lei" last="Wan">Lei Wan</name>
<affiliation>
<nlm:affiliation>Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Ying Ju" sort="Lin, Ying Ju" uniqKey="Lin Y" first="Ying-Ju" last="Lin">Ying-Ju Lin</name>
<affiliation>
<nlm:affiliation>Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Cheng Wen" sort="Lin, Cheng Wen" uniqKey="Lin C" first="Cheng-Wen" last="Lin">Cheng-Wen Lin</name>
<affiliation>
<nlm:affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27173006</idno>
<idno type="pmid">27173006</idno>
<idno type="doi">10.1038/srep25754</idno>
<idno type="wicri:Area/PubMed/Corpus">000C52</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.</title>
<author>
<name sortKey="Li, Shih Wein" sort="Li, Shih Wein" uniqKey="Li S" first="Shih-Wein" last="Li">Shih-Wein Li</name>
<affiliation>
<nlm:affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ching Ying" sort="Wang, Ching Ying" uniqKey="Wang C" first="Ching-Ying" last="Wang">Ching-Ying Wang</name>
<affiliation>
<nlm:affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jou, Yu Jen" sort="Jou, Yu Jen" uniqKey="Jou Y" first="Yu-Jen" last="Jou">Yu-Jen Jou</name>
<affiliation>
<nlm:affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Tsuey Ching" sort="Yang, Tsuey Ching" uniqKey="Yang T" first="Tsuey-Ching" last="Yang">Tsuey-Ching Yang</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Su Hua" sort="Huang, Su Hua" uniqKey="Huang S" first="Su-Hua" last="Huang">Su-Hua Huang</name>
<affiliation>
<nlm:affiliation>Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wan, Lei" sort="Wan, Lei" uniqKey="Wan L" first="Lei" last="Wan">Lei Wan</name>
<affiliation>
<nlm:affiliation>Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Ying Ju" sort="Lin, Ying Ju" uniqKey="Lin Y" first="Ying-Ju" last="Lin">Ying-Ju Lin</name>
<affiliation>
<nlm:affiliation>Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lin, Cheng Wen" sort="Lin, Cheng Wen" uniqKey="Lin C" first="Cheng-Wen" last="Lin">Cheng-Wen Lin</name>
<affiliation>
<nlm:affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>A549 Cells</term>
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Early Growth Response Protein 1 (metabolism)</term>
<term>Epithelial Cells (metabolism)</term>
<term>Fibrosis</term>
<term>Gene Silencing (drug effects)</term>
<term>Glial Fibrillary Acidic Protein (metabolism)</term>
<term>Humans</term>
<term>Lung (cytology)</term>
<term>Mice, Inbred BALB C</term>
<term>Models, Biological</term>
<term>NF-kappa B (metabolism)</term>
<term>Papain (pharmacology)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Small Interfering (metabolism)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>SARS Virus (enzymology)</term>
<term>STAT3 Transcription Factor (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Sp1 Transcription Factor (metabolism)</term>
<term>Thrombospondin 1 (metabolism)</term>
<term>Transforming Growth Factor beta1 (biosynthesis)</term>
<term>Transforming Growth Factor beta1 (genetics)</term>
<term>Transforming Growth Factor beta1 (metabolism)</term>
<term>Up-Regulation (drug effects)</term>
<term>Vimentin (metabolism)</term>
<term>p38 Mitogen-Activated Protein Kinases (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Transforming Growth Factor beta1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Messenger</term>
<term>Transforming Growth Factor beta1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Early Growth Response Protein 1</term>
<term>Glial Fibrillary Acidic Protein</term>
<term>NF-kappa B</term>
<term>RNA, Messenger</term>
<term>RNA, Small Interfering</term>
<term>Reactive Oxygen Species</term>
<term>STAT3 Transcription Factor</term>
<term>Sp1 Transcription Factor</term>
<term>Thrombospondin 1</term>
<term>Transforming Growth Factor beta1</term>
<term>Vimentin</term>
<term>p38 Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Silencing</term>
<term>Signal Transduction</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Epithelial Cells</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Papain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>A549 Cells</term>
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Fibrosis</term>
<term>Humans</term>
<term>Mice, Inbred BALB C</term>
<term>Models, Biological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27173006</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2016</Year>
<Month>05</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>25754</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep25754</ELocationID>
<Abstract>
<AbstractText>SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Shih-Wein</ForeName>
<Initials>SW</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ching-Ying</ForeName>
<Initials>CY</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jou</LastName>
<ForeName>Yu-Jen</ForeName>
<Initials>YJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Tsuey-Ching</ForeName>
<Initials>TC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Su-Hua</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Ying-Ju</ForeName>
<Initials>YJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lin</LastName>
<ForeName>Cheng-Wen</ForeName>
<Initials>CW</Initials>
<AffiliationInfo>
<Affiliation>Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>05</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C497325">EGR1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051766">Early Growth Response Protein 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005904">Glial Fibrillary Acidic Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050796">STAT3 Transcription Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016329">Sp1 Transcription Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019700">Thrombospondin 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053773">Transforming Growth Factor beta1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014746">Vimentin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048051">p38 Mitogen-Activated Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.2</RegistryNumber>
<NameOfSubstance UI="D010206">Papain</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000072283" MajorTopicYN="N">A549 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051766" MajorTopicYN="N">Early Growth Response Protein 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004847" MajorTopicYN="N">Epithelial Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005355" MajorTopicYN="N">Fibrosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005904" MajorTopicYN="N">Glial Fibrillary Acidic Protein</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010206" MajorTopicYN="N">Papain</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050796" MajorTopicYN="N">STAT3 Transcription Factor</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016329" MajorTopicYN="N">Sp1 Transcription Factor</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019700" MajorTopicYN="N">Thrombospondin 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053773" MajorTopicYN="N">Transforming Growth Factor beta1</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014746" MajorTopicYN="N">Vimentin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048051" MajorTopicYN="N">p38 Mitogen-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>11</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27173006</ArticleId>
<ArticleId IdType="pii">srep25754</ArticleId>
<ArticleId IdType="doi">10.1038/srep25754</ArticleId>
<ArticleId IdType="pmc">PMC4865725</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FASEB J. 2011 Nov;25(11):3873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21803859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2012;13(10):13104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23202940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Pathol. 2004 Mar;57(3):260-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Immunol. 2004 Apr;136(1):95-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15030519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1991 Oct;3(5):792-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1718338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jan 5;264(1):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2909528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2005 Aug 15;118(Pt 16):3573-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16105881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Jul;83(13):6689-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19369340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 Apr 10;412(2):284-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21296375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(24):15199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16306591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respirology. 2003 Nov;8 Suppl:S6-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15018126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2011 May;92(Pt 5):1127-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21270289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Jun 1;316 ( Pt 2):381-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8687376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Jun 15;172(12):7841-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15187168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2012 May;55(5):1562-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22105716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2006 Nov;210(3):288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2000 Jan 15;14(2):163-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2008 Jan 4;102(1):42-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17967787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Renal Physiol. 2007 May;292(5):F1471-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17299140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(2):e56367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23437118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Signal Transduct. 2011;2011:792639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Ther Med. 2014 Dec;8(6):1772-1776</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetologia. 2002 Jun;45(6):890-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12107734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chin Med J (Engl). 2003 Sep;116(9):1283-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Infect Dis. 2004 Apr;17(2):143-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15021055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2013 Jan;229(2):286-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23132749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2010 Aug;12(8-9):643-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20430109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Matrix Biol. 2011 May;30(4):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2014 May;5(5):369-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24622840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Feb 8;283(6):3272-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18055455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2007 Apr;170(4):1136-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2012 Nov;12(21):3193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936401</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27173006
   |texte=   SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27173006" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021