Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid Processing: Possible Link to Viral Cell Culture Adaptability.

Identifieur interne : 000B91 ( PubMed/Corpus ); précédent : 000B90; suivant : 000B92

Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid Processing: Possible Link to Viral Cell Culture Adaptability.

Auteurs : Peera Jaru-Ampornpan ; Juggragarn Jengarn ; Asawin Wanitchang ; Anan Jongkaewwattana

Source :

RBID : pubmed:27807240

English descriptors

Abstract

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality rates in newborn piglets, leading to massive losses to the swine industry worldwide during recent epidemics. Intense research efforts are now focusing on defining viral characteristics that confer a growth advantage, pathogenicity, or cell adaptability in order to better understand the PEDV life cycle and identify suitable targets for antiviral or vaccine development. Here, we report a unique phenomenon of PEDV nucleocapsid (N) cleavage by the PEDV-encoded 3C-like protease (3Cpro) during infection. The identification of the 3Cpro cleavage site at the C terminus of N supported previous observations that PEDV 3Cpro showed a substrate requirement slightly different from that of severe acute respiratory syndrome coronavirus (SARS-CoV) 3Cpro and revealed a greater flexibility in its substrate recognition site. This cleavage motif is present in the majority of cell culture-adapted PEDV strains but is missing in emerging field isolates. Remarkably, reverse-genetics-derived cell culture-adapted PEDVAVCT12 harboring uncleavable N displayed growth retardation in Vero E6-APN cells compared to the wild-type virus. These observations altogether shed new light on the investigation and characterization of the PEDV nucleocapsid protein and its possible link to cell culture adaptation.

DOI: 10.1128/JVI.01660-16
PubMed: 27807240

Links to Exploration step

pubmed:27807240

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid Processing: Possible Link to Viral Cell Culture Adaptability.</title>
<author>
<name sortKey="Jaru Ampornpan, Peera" sort="Jaru Ampornpan, Peera" uniqKey="Jaru Ampornpan P" first="Peera" last="Jaru-Ampornpan">Peera Jaru-Ampornpan</name>
<affiliation>
<nlm:affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jengarn, Juggragarn" sort="Jengarn, Juggragarn" uniqKey="Jengarn J" first="Juggragarn" last="Jengarn">Juggragarn Jengarn</name>
<affiliation>
<nlm:affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wanitchang, Asawin" sort="Wanitchang, Asawin" uniqKey="Wanitchang A" first="Asawin" last="Wanitchang">Asawin Wanitchang</name>
<affiliation>
<nlm:affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jongkaewwattana, Anan" sort="Jongkaewwattana, Anan" uniqKey="Jongkaewwattana A" first="Anan" last="Jongkaewwattana">Anan Jongkaewwattana</name>
<affiliation>
<nlm:affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand anan.jon@biotec.or.th.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27807240</idno>
<idno type="pmid">27807240</idno>
<idno type="doi">10.1128/JVI.01660-16</idno>
<idno type="wicri:Area/PubMed/Corpus">000B91</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B91</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid Processing: Possible Link to Viral Cell Culture Adaptability.</title>
<author>
<name sortKey="Jaru Ampornpan, Peera" sort="Jaru Ampornpan, Peera" uniqKey="Jaru Ampornpan P" first="Peera" last="Jaru-Ampornpan">Peera Jaru-Ampornpan</name>
<affiliation>
<nlm:affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jengarn, Juggragarn" sort="Jengarn, Juggragarn" uniqKey="Jengarn J" first="Juggragarn" last="Jengarn">Juggragarn Jengarn</name>
<affiliation>
<nlm:affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wanitchang, Asawin" sort="Wanitchang, Asawin" uniqKey="Wanitchang A" first="Asawin" last="Wanitchang">Asawin Wanitchang</name>
<affiliation>
<nlm:affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jongkaewwattana, Anan" sort="Jongkaewwattana, Anan" uniqKey="Jongkaewwattana A" first="Anan" last="Jongkaewwattana">Anan Jongkaewwattana</name>
<affiliation>
<nlm:affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand anan.jon@biotec.or.th.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Culture Techniques</term>
<term>Chlorocebus aethiops</term>
<term>Coronavirus Infections (virology)</term>
<term>Cysteine Endopeptidases (metabolism)</term>
<term>Genome, Viral</term>
<term>Nucleocapsid (chemistry)</term>
<term>Nucleocapsid (metabolism)</term>
<term>Porcine epidemic diarrhea virus (physiology)</term>
<term>Proteolysis</term>
<term>Swine</term>
<term>Swine Diseases (virology)</term>
<term>Vero Cells</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine Endopeptidases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Nucleocapsid</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Nucleocapsid</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Porcine epidemic diarrhea virus</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Swine Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Cell Culture Techniques</term>
<term>Chlorocebus aethiops</term>
<term>Genome, Viral</term>
<term>Proteolysis</term>
<term>Swine</term>
<term>Vero Cells</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality rates in newborn piglets, leading to massive losses to the swine industry worldwide during recent epidemics. Intense research efforts are now focusing on defining viral characteristics that confer a growth advantage, pathogenicity, or cell adaptability in order to better understand the PEDV life cycle and identify suitable targets for antiviral or vaccine development. Here, we report a unique phenomenon of PEDV nucleocapsid (N) cleavage by the PEDV-encoded 3C-like protease (3Cpro) during infection. The identification of the 3Cpro cleavage site at the C terminus of N supported previous observations that PEDV 3Cpro showed a substrate requirement slightly different from that of severe acute respiratory syndrome coronavirus (SARS-CoV) 3Cpro and revealed a greater flexibility in its substrate recognition site. This cleavage motif is present in the majority of cell culture-adapted PEDV strains but is missing in emerging field isolates. Remarkably, reverse-genetics-derived cell culture-adapted PEDV
<sub>AVCT12</sub>
harboring uncleavable N displayed growth retardation in Vero E6-APN cells compared to the wild-type virus. These observations altogether shed new light on the investigation and characterization of the PEDV nucleocapsid protein and its possible link to cell culture adaptation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27807240</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>05</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>91</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2017</Year>
<Month>Jan</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid Processing: Possible Link to Viral Cell Culture Adaptability.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01660-16</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01660-16</ELocationID>
<Abstract>
<AbstractText>Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high mortality rates in newborn piglets, leading to massive losses to the swine industry worldwide during recent epidemics. Intense research efforts are now focusing on defining viral characteristics that confer a growth advantage, pathogenicity, or cell adaptability in order to better understand the PEDV life cycle and identify suitable targets for antiviral or vaccine development. Here, we report a unique phenomenon of PEDV nucleocapsid (N) cleavage by the PEDV-encoded 3C-like protease (3Cpro) during infection. The identification of the 3Cpro cleavage site at the C terminus of N supported previous observations that PEDV 3Cpro showed a substrate requirement slightly different from that of severe acute respiratory syndrome coronavirus (SARS-CoV) 3Cpro and revealed a greater flexibility in its substrate recognition site. This cleavage motif is present in the majority of cell culture-adapted PEDV strains but is missing in emerging field isolates. Remarkably, reverse-genetics-derived cell culture-adapted PEDV
<sub>AVCT12</sub>
harboring uncleavable N displayed growth retardation in Vero E6-APN cells compared to the wild-type virus. These observations altogether shed new light on the investigation and characterization of the PEDV nucleocapsid protein and its possible link to cell culture adaptation.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">Recurrent PEDV outbreaks have resulted in enormous economic losses to swine industries worldwide. To gain the upper hand in combating this disease, it is necessary to understand how this virus replicates and evades host immunity. Characterization of viral proteins provides important clues to mechanisms by which viruses survive and spread. Here, we characterized an intriguing phenomenon in which the nucleocapsids of some PEDV strains are proteolytically processed by the virally encoded main protease. Growth retardation in recombinant PEDV carrying uncleavable N suggests a replication advantage provided by the cleavage event, at least in the cell culture system. These findings may direct us to a more complete understanding of PEDV replication and pathogenicity.</AbstractText>
<CopyrightInformation>Copyright © 2017 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jaru-Ampornpan</LastName>
<ForeName>Peera</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jengarn</LastName>
<ForeName>Juggragarn</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Norwich Medical School, University of East Anglia, Norfolk, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wanitchang</LastName>
<ForeName>Asawin</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jongkaewwattana</LastName>
<ForeName>Anan</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand anan.jon@biotec.or.th.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>01</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.22.-</RegistryNumber>
<NameOfSubstance UI="D003546">Cysteine Endopeptidases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018929" MajorTopicYN="N">Cell Culture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003546" MajorTopicYN="N">Cysteine Endopeptidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019251" MajorTopicYN="N">Nucleocapsid</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053485" MajorTopicYN="N">Porcine epidemic diarrhea virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="N">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013553" MajorTopicYN="N">Swine Diseases</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">3C-like protease</Keyword>
<Keyword MajorTopicYN="Y">cell adaptation</Keyword>
<Keyword MajorTopicYN="Y">nucleocapsid</Keyword>
<Keyword MajorTopicYN="Y">porcine epidemic diarrhea virus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>08</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27807240</ArticleId>
<ArticleId IdType="pii">JVI.01660-16</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01660-16</ArticleId>
<ArticleId IdType="pmc">PMC5215342</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Viruses. 2014 Aug 07;6(8):2991-3018</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25105276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Aug;85(15):7872-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21613395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Oct 2;208:215-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26196056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Sep;74(17):8127-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1967 Apr 20;27(2):157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6035483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Res. 2015 Nov 20;46:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26589292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Jul;75(14):6676-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2015 Aug;96(8):2206-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25979733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 May 13;6:25961</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27173881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Dec 09;90(4):2090-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26656704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2008 Feb 8;376(1):23-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18155731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 May 10;361(2):304-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17210170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2004 Oct;105(2):121-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15351485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 17;280(24):22741-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2012 Apr;44(2):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22270324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2016 Jul;494:225-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27128350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Oct;84(19):10276-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20660183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Feb;84(4):2169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2014 Jul;460-461:180-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25010284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2001 Oct 15;394(2):229-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11594737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 Apr 20;43(15):4568-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vet Diagn Invest. 2013 Sep;25(5):649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23963154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Mar;89(6):3332-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2015 Jul;96(Pt 7):1757-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25814121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 16;279(3):1637-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14561748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2000 Apr;81(Pt 4):853-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Vet Med Assoc. 2014 Jul 15;245(2):166-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25115019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Exp Vaccine Res. 2015 Jul;4(2):166-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26273575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2014 Jan;52(1):234-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24197882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 May;76(10):4987-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1999 Dec;73(12):10158-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1978;58(3):243-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">83132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2014 Mar 13;6(3):1253-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24632575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2002 Mar;83(Pt 3):595-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2016 Dec 2;226:20-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27288724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Jun 06;5:72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Feb;75(3):1312-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Jan 20;357(2):215-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16979208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Genes. 2001;23(2):137-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2012 Mar 08;3:e277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22402601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1993;342:55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8209771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vet Microbiol. 2013 Jun 28;164(3-4):212-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23562137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 May;74(9):3975-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10756009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Aug;88(16):8936-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24872591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2015 Sep;89(17):9029-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26085159</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000B91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27807240
   |texte=   Porcine Epidemic Diarrhea Virus 3C-Like Protease-Mediated Nucleocapsid Processing: Possible Link to Viral Cell Culture Adaptability.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27807240" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021