Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

SARS-CoV fusion peptides induce membrane surface ordering and curvature.

Identifieur interne : 000B85 ( PubMed/Corpus ); précédent : 000B84; suivant : 000B86

SARS-CoV fusion peptides induce membrane surface ordering and curvature.

Auteurs : Luis G M. Basso ; Eduardo F. Vicente ; Edson Crusca ; Eduardo M. Cilli ; Antonio J. Costa-Filho

Source :

RBID : pubmed:27892522

English descriptors

Abstract

Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.

DOI: 10.1038/srep37131
PubMed: 27892522

Links to Exploration step

pubmed:27892522

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">SARS-CoV fusion peptides induce membrane surface ordering and curvature.</title>
<author>
<name sortKey="Basso, Luis G M" sort="Basso, Luis G M" uniqKey="Basso L" first="Luis G M" last="Basso">Luis G M. Basso</name>
<affiliation>
<nlm:affiliation>Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vicente, Eduardo F" sort="Vicente, Eduardo F" uniqKey="Vicente E" first="Eduardo F" last="Vicente">Eduardo F. Vicente</name>
<affiliation>
<nlm:affiliation>Faculdade de Ciências e Engenharia, UNESP - Univ Estadual Paulista, Campus de Tupã. Rua Domingos da Costa Lopes, 780, 17602-496, Tupã, SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crusca, Edson" sort="Crusca, Edson" uniqKey="Crusca E" first="Edson" last="Crusca">Edson Crusca</name>
<affiliation>
<nlm:affiliation>Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cilli, Eduardo M" sort="Cilli, Eduardo M" uniqKey="Cilli E" first="Eduardo M" last="Cilli">Eduardo M. Cilli</name>
<affiliation>
<nlm:affiliation>Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Costa Filho, Antonio J" sort="Costa Filho, Antonio J" uniqKey="Costa Filho A" first="Antonio J" last="Costa-Filho">Antonio J. Costa-Filho</name>
<affiliation>
<nlm:affiliation>Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27892522</idno>
<idno type="pmid">27892522</idno>
<idno type="doi">10.1038/srep37131</idno>
<idno type="wicri:Area/PubMed/Corpus">000B85</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B85</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">SARS-CoV fusion peptides induce membrane surface ordering and curvature.</title>
<author>
<name sortKey="Basso, Luis G M" sort="Basso, Luis G M" uniqKey="Basso L" first="Luis G M" last="Basso">Luis G M. Basso</name>
<affiliation>
<nlm:affiliation>Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Vicente, Eduardo F" sort="Vicente, Eduardo F" uniqKey="Vicente E" first="Eduardo F" last="Vicente">Eduardo F. Vicente</name>
<affiliation>
<nlm:affiliation>Faculdade de Ciências e Engenharia, UNESP - Univ Estadual Paulista, Campus de Tupã. Rua Domingos da Costa Lopes, 780, 17602-496, Tupã, SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Crusca, Edson" sort="Crusca, Edson" uniqKey="Crusca E" first="Edson" last="Crusca">Edson Crusca</name>
<affiliation>
<nlm:affiliation>Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cilli, Eduardo M" sort="Cilli, Eduardo M" uniqKey="Cilli E" first="Eduardo M" last="Cilli">Eduardo M. Cilli</name>
<affiliation>
<nlm:affiliation>Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Costa Filho, Antonio J" sort="Costa Filho, Antonio J" uniqKey="Costa Filho A" first="Antonio J" last="Costa-Filho">Antonio J. Costa-Filho</name>
<affiliation>
<nlm:affiliation>Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calorimetry, Differential Scanning</term>
<term>Cell Membrane (chemistry)</term>
<term>Electron Spin Resonance Spectroscopy</term>
<term>Membrane Fusion</term>
<term>Peptides (chemistry)</term>
<term>SARS Virus (chemistry)</term>
<term>Thermodynamics</term>
<term>Viral Fusion Proteins (chemistry)</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Peptides</term>
<term>Viral Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Membrane</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Calorimetry, Differential Scanning</term>
<term>Electron Spin Resonance Spectroscopy</term>
<term>Membrane Fusion</term>
<term>Thermodynamics</term>
<term>Virus Internalization</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27892522</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-2322</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<PubDate>
<Year>2016</Year>
<Month>11</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Scientific reports</Title>
<ISOAbbreviation>Sci Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>SARS-CoV fusion peptides induce membrane surface ordering and curvature.</ArticleTitle>
<Pagination>
<MedlinePgn>37131</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/srep37131</ELocationID>
<Abstract>
<AbstractText>Viral membrane fusion is an orchestrated process triggered by membrane-anchored viral fusion glycoproteins. The S2 subunit of the spike glycoprotein from severe acute respiratory syndrome (SARS) coronavirus (CoV) contains internal domains called fusion peptides (FP) that play essential roles in virus entry. Although membrane fusion has been broadly studied, there are still major gaps in the molecular details of lipid rearrangements in the bilayer during fusion peptide-membrane interactions. Here we employed differential scanning calorimetry (DSC) and electron spin resonance (ESR) to gather information on the membrane fusion mechanism promoted by two putative SARS FPs. DSC data showed the peptides strongly perturb the structural integrity of anionic vesicles and support the hypothesis that the peptides generate opposing curvature stresses on phosphatidylethanolamine membranes. ESR showed that both FPs increase lipid packing and head group ordering as well as reduce the intramembrane water content for anionic membranes. Therefore, bending moment in the bilayer could be generated, promoting negative curvature. The significance of the ordering effect, membrane dehydration, changes in the curvature properties and the possible role of negatively charged phospholipids in helping to overcome the high kinetic barrier involved in the different stages of the SARS-CoV-mediated membrane fusion are discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Basso</LastName>
<ForeName>Luis G M</ForeName>
<Initials>LG</Initials>
<AffiliationInfo>
<Affiliation>Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vicente</LastName>
<ForeName>Eduardo F</ForeName>
<Initials>EF</Initials>
<AffiliationInfo>
<Affiliation>Faculdade de Ciências e Engenharia, UNESP - Univ Estadual Paulista, Campus de Tupã. Rua Domingos da Costa Lopes, 780, 17602-496, Tupã, SP, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crusca</LastName>
<ForeName>Edson</ForeName>
<Initials>E</Initials>
<Suffix>Jr</Suffix>
<AffiliationInfo>
<Affiliation>Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cilli</LastName>
<ForeName>Eduardo M</ForeName>
<Initials>EM</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP - Univ Estadual Paulista. Rua Prof. Franscisco Degni, 55, 14800-900, Araraquara, SP, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Costa-Filho</LastName>
<ForeName>Antonio J</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>11</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Sci Rep</MedlineTA>
<NlmUniqueID>101563288</NlmUniqueID>
<ISSNLinking>2045-2322</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014760">Viral Fusion Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002152" MajorTopicYN="N">Calorimetry, Differential Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004578" MajorTopicYN="N">Electron Spin Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008561" MajorTopicYN="Y">Membrane Fusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014760" MajorTopicYN="N">Viral Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="Y">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>10</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>11</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27892522</ArticleId>
<ArticleId IdType="pii">srep37131</ArticleId>
<ArticleId IdType="doi">10.1038/srep37131</ArticleId>
<ArticleId IdType="pmc">PMC5125003</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14312-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10588702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2000 Oct;79(4):2043-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11023908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Nov 10;1469(3):159-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11063882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Rep. 2000 Dec;20(6):501-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11426691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2001 Sep;130(3):393-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11530015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2002;66(4):249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12491538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2003 Apr;84(4):2619-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2003 Apr;4(4):309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Jul 11;1614(1):104-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Jul 11;1614(1):116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12873772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2003;72:175-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2003 Dec;85(6):4023-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Dec 26;312(4):1159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2003 Dec;1(3):209-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2004 Jul;73(3):332-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Phys Lipids. 2004 Jul;130(2):135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15172830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2004 Oct;14(5):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Mar 17;31(10):2653-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17958-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Jun;79(11):7195-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Oct 25;341(2):215-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16099010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2006 Jan;4(1):67-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16357862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jul 5;350(2):358-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16519916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 2005 Dec;208(3):193-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16604469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2005 Jun 23;109(24):12003-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16852481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2006 Oct;16(10):538-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Mar 20;46(11):3183-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17300177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2007 Dec 13;111(49):13714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18020324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2008 Feb;18(2):290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18227861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Jun 12;112(23):6997-7007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18489147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Jul;15(7):675-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Jul;15(7):690-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Aug 5;47(31):8214-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Dec;1778(12):2765-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18721794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2009 Feb;96(3):997-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19186137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2009 Apr 1;131(12):4470-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19278224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 May;1788(5):954-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19366598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Membr Biol. 2009 May;26(4):236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19412834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 Aug;83(15):7411-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19439480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2009 Jun 17;96(12):4925-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19527651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2009 Aug 10;10(8):2152-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19603784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Phys Lipids. 2010 Jan;163(1):82-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19799887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Feb 23;49(7):1486-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20092291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Jan;1808(1):55-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20713019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2011 Jun 27;16(7):5437-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21709624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2012 Jan 12;116(1):179-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22091896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Jan 25;134(3):1543-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22191854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2012 Jun;4(6):1011-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22816037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Fluoresc. 1995 Mar;5(1):19-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2013 Dec 3;105(11):2495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24314080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2014 Jan 7;106(1):172-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24411249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Feb 12;136(6):2611-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24428385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Pept Lett. 2015;22(2):119-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24810226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25082896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2014 Sep 16;107(6):1375-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25229145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1989 Jan;55(1):111-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2539207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Jan 2;290(1):228-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25398882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Feb;1848(2):721-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25475644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Phys Lipids. 2015 Feb;186:68-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25555567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2015 Mar 10;54(9):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25668103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 May 22;290(21):12999-3015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25787074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Jun;11(6):424-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25915200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 May 26;6:7238</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26006266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2015 Aug 13;119(32):10261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26214261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10926-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26283363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2014 Nov;1(1):171-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26958720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Rev. 2016 Jun;8(2):179-191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28510056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1987 Dec 21;129(4):411-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3455469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1987 Sep 22;26(19):6118-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3689765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Phys Lipids. 1969 Dec;3(4):304-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4905514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1982 Sep 28;21(20):5020-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6814482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1982 Jul 14;689(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7104344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1995 Nov 22;1240(1):95-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7495854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1994 Apr;66(4):1213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7518705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 May;69(5):3049-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7707532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1995 Mar;68(3):847-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7756552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1994 May;66(5):1515-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8061200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Feb 22;33(7):1820-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8110784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Oct 15;268(29):22112-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8408070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1997 Dec;73(6):3089-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9414222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1998 Feb;74(2 Pt 1):910-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9533702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1998 May 10;244(2):483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9601516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Jun 2;37(22):8180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9609714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1976 Oct 19;15(21):4575-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">974077</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000B85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27892522
   |texte=   SARS-CoV fusion peptides induce membrane surface ordering and curvature.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27892522" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021