Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genomic investigation of piglet resilience following porcine epidemic diarrhea outbreaks.

Identifieur interne : 000B77 ( PubMed/Corpus ); précédent : 000B76; suivant : 000B78

Genomic investigation of piglet resilience following porcine epidemic diarrhea outbreaks.

Auteurs : F. Bertolini ; J C S. Harding ; B. Mote ; A. Ladinig ; G S Plastow ; M F Rothschild

Source :

RBID : pubmed:27943331

English descriptors

Abstract

Porcine epidemic diarrhea virus (PEDV) belongs to the Coronaviridae family and causes malabsorptive watery diarrhea, vomiting, dehydration and imbalanced blood electrolytes in pigs. Since the 1970s, PED outbreaks have become a source of problems in pig producing countries all over the world, causing large economic losses for pig producers. Although the infection in adults is not fatal, in naïve suckling piglets mortality is close to 100%. In this study, we investigated genome-wide differences between dead and recovered suckling piglets from commercial farms after PED outbreaks. Samples from 262 animals (156 dead and 106 recovered) belonging to several commercial lines were collected from five different farms in three different countries (USA, Canada and Germany) and genotyped with the porcine 80K SNP chip. Mean Fst value was calculated in 1-Mb non-overlapping windows between dead and recovered individuals, and the results were normalized to find differences within the comparison. Seven windows with high divergence between dead and recovered were detected-five on chromosome 2, one on chromosome 4 and one on chromosome 15-in total encompassing 152 genes. Several of these genes are either under- or overexpressed in many virus infections, including Coronaviridae (such as SARS-CoV). A total of 32 genes are included in one or more Gene Ontology terms that can be related to PED development, such as Golgi apparatus, as well as mechanisms generally linked to resilience or diarrhea development (cell proliferation, ion transport, ATPase activity). Taken together this information provides a first genomic picture of PEDV resilience in suckling piglets.

DOI: 10.1111/age.12522
PubMed: 27943331

Links to Exploration step

pubmed:27943331

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genomic investigation of piglet resilience following porcine epidemic diarrhea outbreaks.</title>
<author>
<name sortKey="Bertolini, F" sort="Bertolini, F" uniqKey="Bertolini F" first="F" last="Bertolini">F. Bertolini</name>
<affiliation>
<nlm:affiliation>Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harding, J C S" sort="Harding, J C S" uniqKey="Harding J" first="J C S" last="Harding">J C S. Harding</name>
<affiliation>
<nlm:affiliation>Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mote, B" sort="Mote, B" uniqKey="Mote B" first="B" last="Mote">B. Mote</name>
<affiliation>
<nlm:affiliation>Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ladinig, A" sort="Ladinig, A" uniqKey="Ladinig A" first="A" last="Ladinig">A. Ladinig</name>
<affiliation>
<nlm:affiliation>University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Wien, 1210, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plastow, G S" sort="Plastow, G S" uniqKey="Plastow G" first="G S" last="Plastow">G S Plastow</name>
<affiliation>
<nlm:affiliation>Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rothschild, M F" sort="Rothschild, M F" uniqKey="Rothschild M" first="M F" last="Rothschild">M F Rothschild</name>
<affiliation>
<nlm:affiliation>Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27943331</idno>
<idno type="pmid">27943331</idno>
<idno type="doi">10.1111/age.12522</idno>
<idno type="wicri:Area/PubMed/Corpus">000B77</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genomic investigation of piglet resilience following porcine epidemic diarrhea outbreaks.</title>
<author>
<name sortKey="Bertolini, F" sort="Bertolini, F" uniqKey="Bertolini F" first="F" last="Bertolini">F. Bertolini</name>
<affiliation>
<nlm:affiliation>Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harding, J C S" sort="Harding, J C S" uniqKey="Harding J" first="J C S" last="Harding">J C S. Harding</name>
<affiliation>
<nlm:affiliation>Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mote, B" sort="Mote, B" uniqKey="Mote B" first="B" last="Mote">B. Mote</name>
<affiliation>
<nlm:affiliation>Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ladinig, A" sort="Ladinig, A" uniqKey="Ladinig A" first="A" last="Ladinig">A. Ladinig</name>
<affiliation>
<nlm:affiliation>University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Wien, 1210, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Plastow, G S" sort="Plastow, G S" uniqKey="Plastow G" first="G S" last="Plastow">G S Plastow</name>
<affiliation>
<nlm:affiliation>Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rothschild, M F" sort="Rothschild, M F" uniqKey="Rothschild M" first="M F" last="Rothschild">M F Rothschild</name>
<affiliation>
<nlm:affiliation>Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Animal genetics</title>
<idno type="eISSN">1365-2052</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (genetics)</term>
<term>Coronavirus Infections (immunology)</term>
<term>Coronavirus Infections (veterinary)</term>
<term>Disease Outbreaks</term>
<term>Porcine epidemic diarrhea virus (physiology)</term>
<term>Sus scrofa</term>
<term>Swine</term>
<term>Swine Diseases (epidemiology)</term>
<term>Swine Diseases (genetics)</term>
<term>Swine Diseases (immunology)</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Swine Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Swine Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Swine Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Porcine epidemic diarrhea virus</term>
</keywords>
<keywords scheme="MESH" qualifier="veterinary" xml:lang="en">
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Outbreaks</term>
<term>Sus scrofa</term>
<term>Swine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Porcine epidemic diarrhea virus (PEDV) belongs to the Coronaviridae family and causes malabsorptive watery diarrhea, vomiting, dehydration and imbalanced blood electrolytes in pigs. Since the 1970s, PED outbreaks have become a source of problems in pig producing countries all over the world, causing large economic losses for pig producers. Although the infection in adults is not fatal, in naïve suckling piglets mortality is close to 100%. In this study, we investigated genome-wide differences between dead and recovered suckling piglets from commercial farms after PED outbreaks. Samples from 262 animals (156 dead and 106 recovered) belonging to several commercial lines were collected from five different farms in three different countries (USA, Canada and Germany) and genotyped with the porcine 80K SNP chip. Mean F
<sub>st</sub>
value was calculated in 1-Mb non-overlapping windows between dead and recovered individuals, and the results were normalized to find differences within the comparison. Seven windows with high divergence between dead and recovered were detected-five on chromosome 2, one on chromosome 4 and one on chromosome 15-in total encompassing 152 genes. Several of these genes are either under- or overexpressed in many virus infections, including Coronaviridae (such as SARS-CoV). A total of 32 genes are included in one or more Gene Ontology terms that can be related to PED development, such as Golgi apparatus, as well as mechanisms generally linked to resilience or diarrhea development (cell proliferation, ion transport, ATPase activity). Taken together this information provides a first genomic picture of PEDV resilience in suckling piglets.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27943331</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2052</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2017</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Animal genetics</Title>
<ISOAbbreviation>Anim. Genet.</ISOAbbreviation>
</Journal>
<ArticleTitle>Genomic investigation of piglet resilience following porcine epidemic diarrhea outbreaks.</ArticleTitle>
<Pagination>
<MedlinePgn>228-232</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/age.12522</ELocationID>
<Abstract>
<AbstractText>Porcine epidemic diarrhea virus (PEDV) belongs to the Coronaviridae family and causes malabsorptive watery diarrhea, vomiting, dehydration and imbalanced blood electrolytes in pigs. Since the 1970s, PED outbreaks have become a source of problems in pig producing countries all over the world, causing large economic losses for pig producers. Although the infection in adults is not fatal, in naïve suckling piglets mortality is close to 100%. In this study, we investigated genome-wide differences between dead and recovered suckling piglets from commercial farms after PED outbreaks. Samples from 262 animals (156 dead and 106 recovered) belonging to several commercial lines were collected from five different farms in three different countries (USA, Canada and Germany) and genotyped with the porcine 80K SNP chip. Mean F
<sub>st</sub>
value was calculated in 1-Mb non-overlapping windows between dead and recovered individuals, and the results were normalized to find differences within the comparison. Seven windows with high divergence between dead and recovered were detected-five on chromosome 2, one on chromosome 4 and one on chromosome 15-in total encompassing 152 genes. Several of these genes are either under- or overexpressed in many virus infections, including Coronaviridae (such as SARS-CoV). A total of 32 genes are included in one or more Gene Ontology terms that can be related to PED development, such as Golgi apparatus, as well as mechanisms generally linked to resilience or diarrhea development (cell proliferation, ion transport, ATPase activity). Taken together this information provides a first genomic picture of PEDV resilience in suckling piglets.</AbstractText>
<CopyrightInformation>© 2016 Stichting International Foundation for Animal Genetics.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bertolini</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harding</LastName>
<ForeName>J C S</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mote</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ladinig</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Wien, 1210, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Plastow</LastName>
<ForeName>G S</ForeName>
<Initials>GS</Initials>
<AffiliationInfo>
<Affiliation>Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2R3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rothschild</LastName>
<ForeName>M F</ForeName>
<Initials>MF</Initials>
<AffiliationInfo>
<Affiliation>Department of Animal Science, Iowa State University, Ames, IA, 50011-3150, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>12</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Anim Genet</MedlineTA>
<NlmUniqueID>8605704</NlmUniqueID>
<ISSNLinking>0268-9146</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000662" MajorTopicYN="Y">veterinary</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053485" MajorTopicYN="N">Porcine epidemic diarrhea virus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034421" MajorTopicYN="N">Sus scrofa</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013553" MajorTopicYN="N">Swine Diseases</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">F st </Keyword>
<Keyword MajorTopicYN="N">piglets</Keyword>
<Keyword MajorTopicYN="N">porcine epidemic diarrhea virus</Keyword>
<Keyword MajorTopicYN="N">resilience</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27943331</ArticleId>
<ArticleId IdType="doi">10.1111/age.12522</ArticleId>
<ArticleId IdType="pmc">PMC7159462</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2005 Dec;69(4):635-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339739</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2007 Nov;39(11):1321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17906626</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2009 Feb 03;10:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192299</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Am Vet Med Assoc. 2007 Jul 1;231(1):56-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17605665</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Syst Biol. 2009;5:321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888216</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Emerg Infect Dis. 2014 Apr;20(4):662-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24795932</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Genes. 1995;10(2):137-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8560773</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2010 Mar 25;464(7288):587-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20220755</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2007 Jun 1;316(5829):1298-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540894</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Arch Virol. 1978;58(3):243-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">83132</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2008 Nov;8(11):889-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18927577</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Microbiol. 2010 Jul 29;144(1-2):41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074871</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Res. 2014 Jul 14;45:73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25017790</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Hum Genet. 2007 Sep;81(3):559-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17701901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet J. 2015 May;204(2):134-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25841898</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2009 Sep;19(9):1655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648217</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17502601</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Vet Sci. 2003 Dec;4(3):269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14685034</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virology. 2007 Aug 15;365(1):166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17467767</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Am J Hum Genet. 2007 Nov;81(5):1084-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17924348</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2013 Apr 15;14:128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23586463</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Immunol. 2012;30:271-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22224770</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Genes. 2012 Apr;44(2):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22270324</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2007 Mar 23;3(3):e39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17381235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2005 Dec 2;310(5753):1461-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322449</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Microbiol. 2000 Mar 15;72(3-4):173-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10727829</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Aug 12;9(8):e104766</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25116479</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Clin Invest. 2003 Apr;111(7):931-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671039</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Comput Biol. 2012;8(6):e1002531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22761553</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Can Vet J. 1980 Mar;21(3):100-xxiii</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7363267</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Vet Pathol. 1982 Jan;19(1):57-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6280360</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000B77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:27943331
   |texte=   Genomic investigation of piglet resilience following porcine epidemic diarrhea outbreaks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:27943331" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021